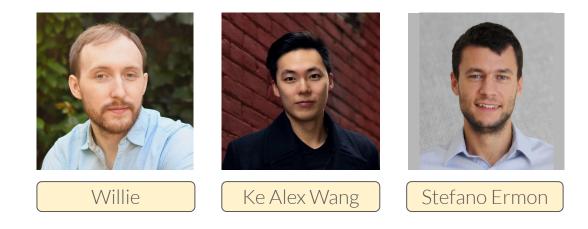
Going Beyond Global Optima with **Bayesian Algorithm Execution**

Willie Neiswanger

Going Beyond Global Optima with **Bayesian Algorithm Execution**

Willie Neiswanger



Going Beyond Global Optima with **Bayesian Algorithm Execution**

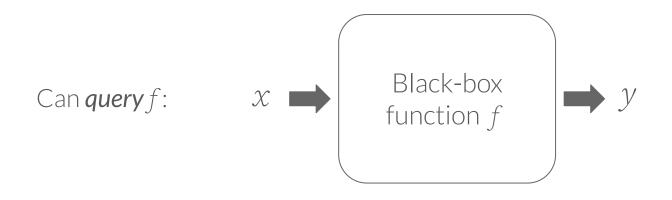
Willie Neiswanger

Extending Bayesian optimization from estimating global optima to estimating other function properties defined by algorithms

BACKGROUND

Background on Black-box Global Optimization

Suppose we have a noisy "black-box" function f.

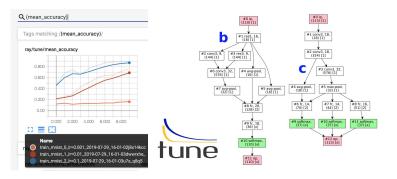


Assume:

- Observations are **noisy**: $y \sim f(x) + \varepsilon$
- Each function query is **costly**
 - E.g. in money, time, labor, etc.
- Goal: estimate the location of **global optima** of f
- Budget of T queries

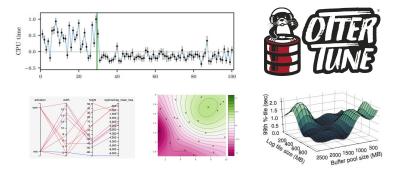
Black-box Global Optimization – many applications

Hyperparameter Opt & Neural Architecture Search

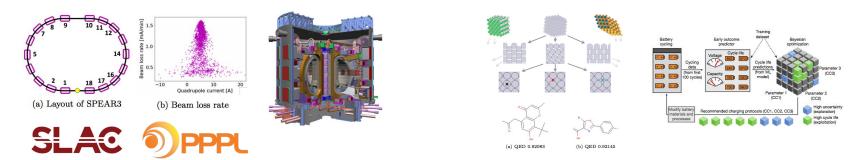


Optimizing Laboratory Equipment & Machines

Systems Auto-tuning



Materials Discovery & Protocols



[1] Korovina, Ksenia, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, and Eric Xing. "Chembo: Bayesian optimization of small organic molecules with synthesizable recommendations." AISTATS, 2020.. [2] Duris, Joseph, Dylan Kennedy, Adi Hanuka, Jane Shtalenkova, Auralee Edelen, P. Baxevanis, Adam Egger et al. "Bayesian optimization of a free-electron laser." Physical review letters 124, no. 12 (2020): 124801.

[3] Tran, Kevin, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang, Eric Xing, and Zachary W. Ulissi. "Methods for comparing uncertainty quantifications for material property predictions." Machine Learning: Science and Technology 1, no. 2 (2020): 025006. [4] Attia et al., "Closed-loop optimization of fast-charging protocols for batteries with machine learning", Nature, 2020

[5] Char, Ian, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Andrew O. Nelson, Mark Boyer, Egemen Kolemen, and Jeff Schneider. "Offline contextual Bayesian optimization." Advances in Neural Information Processing Systems 32 (2019). [6] Facebook blog, "Efficient tuning of online systems using Bayesian optimization", Ben Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy, September 27, 2018

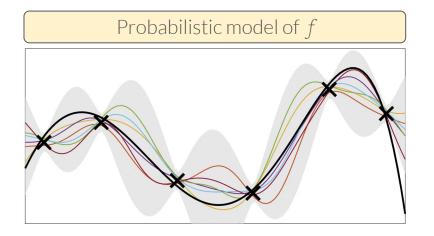
[7] Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., & Xing, E. P. "Neural architecture search with Bayesian optimisation and optimal transport". NeurIPS 2018.

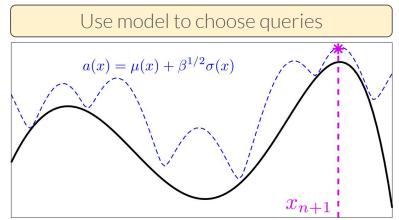
[8] Van Aken, Dana, et al. "Automatic database management system tuning through large-scale machine learning." Proceedings of the 2017 ACM International Conference on Management of Data. 2017.

BACKGROUND

A popular method is **Bayesian optimization (BO)**

- Leverages a probabilistic model of *f* to sequentially choose queries.
- The model can:
 - incorporate prior beliefs about f (e.g. smoothness)
 - tell us where we are certain vs uncertain about f
- ⇒ Sample efficient optimization.





BEYOND GLOBAL OPTIMA

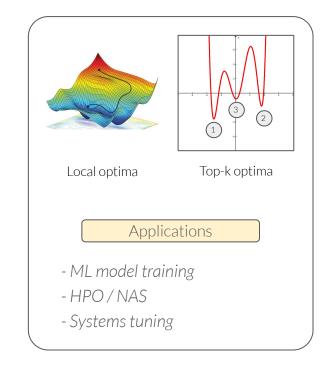
Estimating other properties

- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)

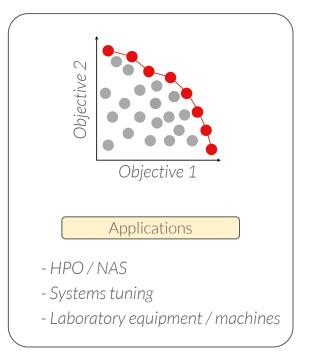
BEYOND GLOBAL OPTIMA

Estimating other properties

- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



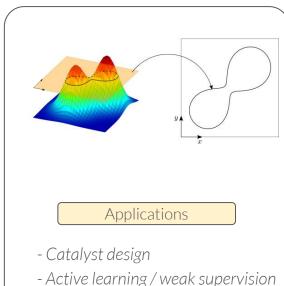
- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



BEYOND GLOBAL OPTIMA

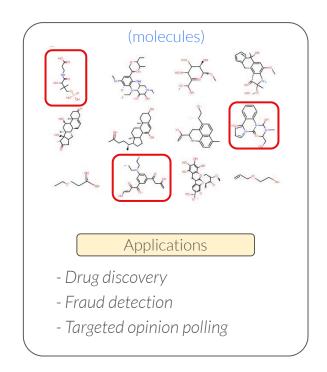
Estimating other properties

- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



- Active learning / weak supervisio
- Environmental monitoring

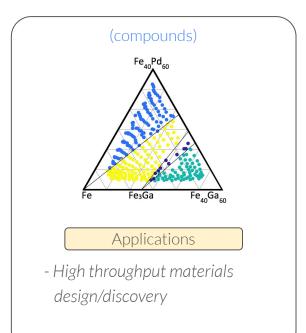
- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



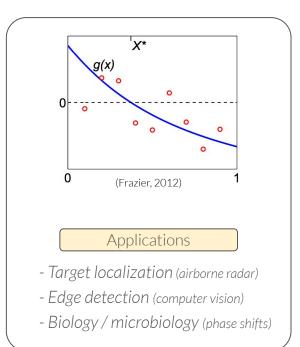
BEYOND GLOBAL OPTIMA

Estimating other properties

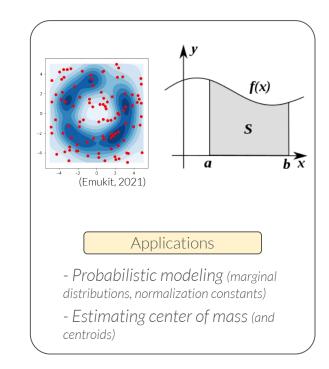
- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)

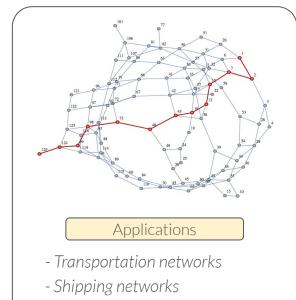


- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



In a variety of real-world tasks, there are **many other properties** of black-box functions that we also want to estimate:

- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



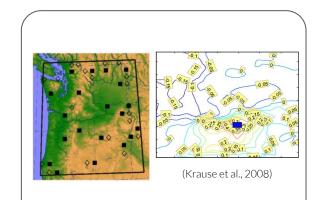
- Social networks

BEYOND GLOBAL OPTIMA

Estimating other properties

In a variety of real-world tasks, there are **many other properties** of black-box functions that we also want to estimate:

- Optimization variations (global/local/top-k optima)
- Multi-objective optimization (Pareto frontiers)
- Level set estimation (sublevel sets, superlevel sets)
- Search (subset w/ value matching some criteria)
- Phase identification (boundaries / partitions)
- Root finding / noisy bisection (roots)
- Quadrature (integrals, expectations, averages)
- Graph-structured estimation (shortest paths)
- Sensor placement (function value at set of locations)



Applications

- Water distribution systems
- Outbreak detection in networks
- Weather monitoring

Our goal

To develop methods to estimate a broad set of function properties within a limited budget, using probabilistic models.

⇒ Can view this as a generalization of Bayesian optimization to other function properties... *beyond global optima*.

First question:

How do we formalize "other function properties"?

Often exists effective algorithms for computing (or numerically approximating) the property, *if you ignore budget constraint*

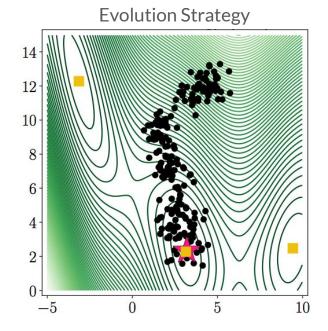
Often exists effective algorithms for computing (or numerically approximating) the property, *if you ignore budget constraint*

Property: local optima (close to some initial point) of f

Often exists effective algorithms for computing (or numerically approximating) the property, *if you ignore budget constraint*

Property: local optima (close to some initial point) of f **Algorithm:** local optimization algorithm

e.g. gradient descent, Nelder-Mead method, evolutionary algorithm, etc.



Often exists effective algorithms for computing (or numerically approximating) the property, **if you ignore budget constraint**

Property: local optima (close to some initial point) of f **Algorithm:** local optimization algorithm

e.g. gradient descent, Nelder-Mead method, evolutionary algorithm, etc.

 \Rightarrow initialize at some location, then run local minimizer. Return final query as output.



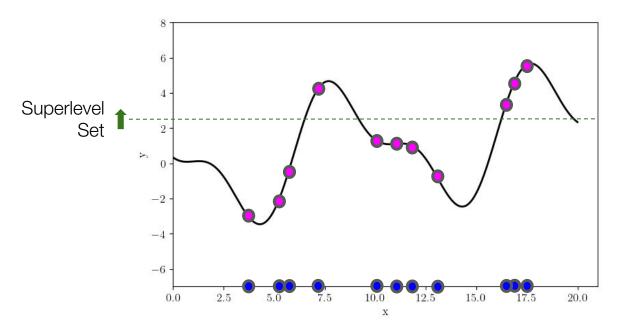
Often exists effective algorithms for computing (or numerically approximating) the property, *if you ignore budget constraint*

Property: superlevel set of f (e.g. over a discrete space of items).

Often exists effective algorithms for computing (or numerically approximating) the property, **if you ignore budget constraint**

Property: superlevel set of f (e.g. over a discrete space of items). **Algorithm:** scan and threshold.

 \Rightarrow Scan through each item \bigcirc , query its value \bigcirc , return subset of items above threshold.



Often exists effective algorithms for computing (or numerically approximating) the property, *if you ignore budget constraint*

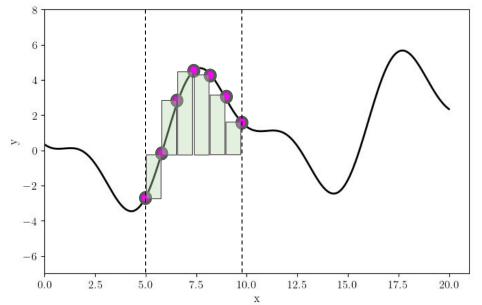
Property: integral or expectation of f.

Often exists effective algorithms for computing (or numerically approximating) the property, *if you ignore budget constraint*

Property: integral or expectation of f.

Algorithm: numerical integration (e.g. rectangle/trapezoidal approximation).

⇒ Run numerical integration (*e.g. rectangle/trapezoidal approximation*). Return approximate integral over region.



Definition: computable function property

The output of a given algorithm A, if it were run on our black-box function f.

⇒ E.g. previous properties are all *computable function properties*: local optima, integrals, level sets, Pareto frontiers, partitions — and many others, defined by an algorithm!

Definition: computable function property

The output of a given algorithm A, if it were run on our black-box function f.

⇒ E.g. previous properties are all *computable function properties*: local optima, integrals, level sets, Pareto frontiers, partitions — and many others, defined by an algorithm!

Definition: Bayesian algorithm execution (BAX)

The task of estimating a *computable function property* (output of an algorithm *A*), using a budget of only *T* queries to *f*.

(Even if algorithm A requires far more than T queries.)

Definition: computable function property

The output of a given algorithm A, if it were run on our black-box function f.

⇒ E.g. previous properties are all *computable function properties*: local optima, integrals, level sets, Pareto frontiers, partitions — and many others, defined by an algorithm!

Definition: Bayesian algorithm execution (BAX)

The task of estimating a *computable function property* (output of an algorithm *A*), using a budget of only *T* queries to *f*.

(Even if algorithm A requires far more than T queries.)

Note: two main reasons to frame *function property* in terms of an algorithm:

(1) gives a flexible way to define function properties.

(2) we will use algorithm in our procedure to estimate these properties.

Methods for BAX

Information-based method for BAX

InfoBAX — an algorithm for BAX, based on info-theoretic methods for BO.

Information-based method for BAX

InfoBAX — an algorithm for BAX, based on info-theoretic methods for BO.

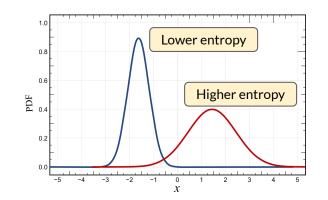
Some relevant background

There exist a few popular info-based methods for BO:

- E.g. entropy search (ES), predictive ES, max-value ES.
- Rooted in **Bayesian optimal experimental design (BOED)**.

BOED: have model with an (unknown) parameter of interest.

- Choose experiments that most reduce uncertainty about parameter.
- Uncertainty: entropy of posterior distribution over parameter.



Reducing theodolite measurements for surveying.

Information-based method for BAX

InfoBAX — an algorithm for BAX, based on info-theoretic methods for BO.

Some relevant background

There exist a few popular info-based methods for BO:

- E.g. entropy search (ES), predictive ES, max-value ES.
- Rooted in Bayesian optimal experimental design (BOED).

BOED: have model with an (unknown) parameter of interest.

- Choose experiments that most reduce uncertainty about parameter.
- Uncertainty: entropy of posterior distribution over parameter.

To describe InfoBAX:

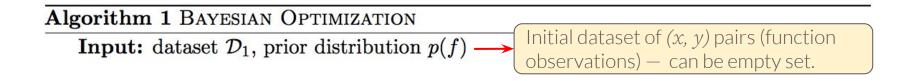
- (1) Describe info-based BO.
- (2) Extend it to info-based BAX.

Reducing theodolite measurements for surveying.

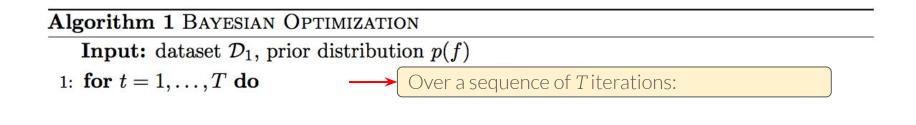
Information-based Bayesian Optimization

Algorithm 1 BAYESIAN OPTIMIZATION

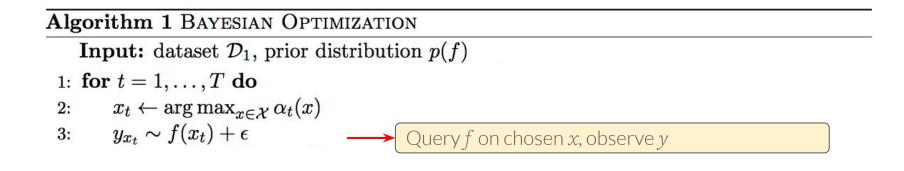
Information-based Bayesian Optimization

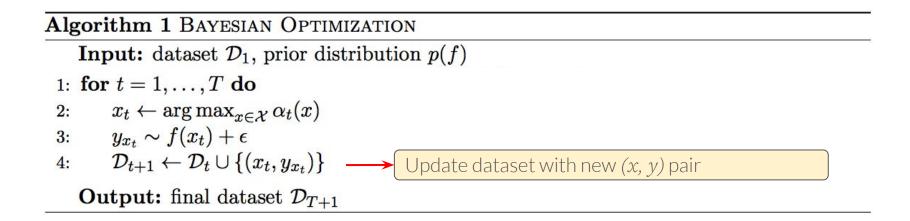


Information-based Bayesian Optimization

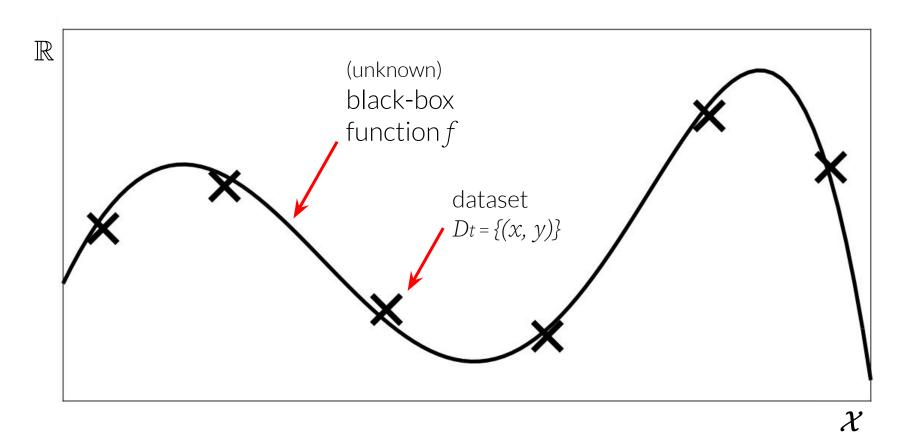


Algorithm 1 BAYESIAN OPTIMIZATION	
Input: dataset \mathcal{D}_1 , prior distribution $p(f)$	
1: for $t = 1,, T$ do 2: $x_t \leftarrow \arg \max_{x \in \mathcal{X}} \alpha_t(x)$	 Optimize an acquisition function. aims to capture value of querying f at an x. defined using our probabilistic model. ⇒ Chooses next x to query.



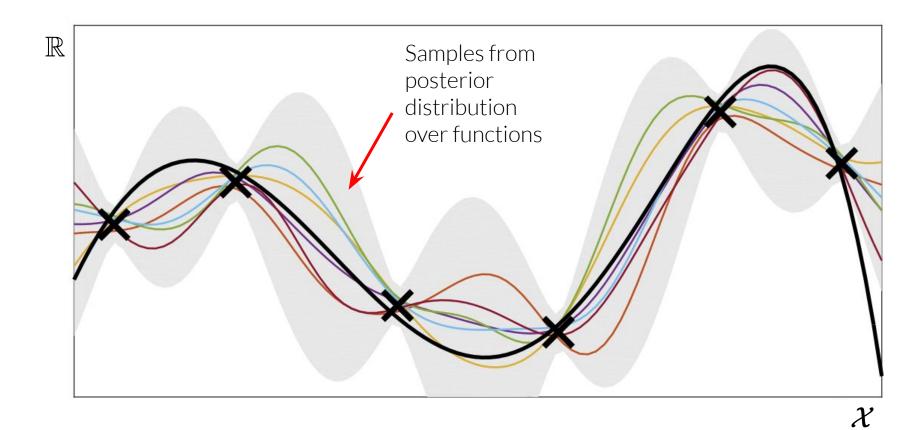


Visualizing this ...



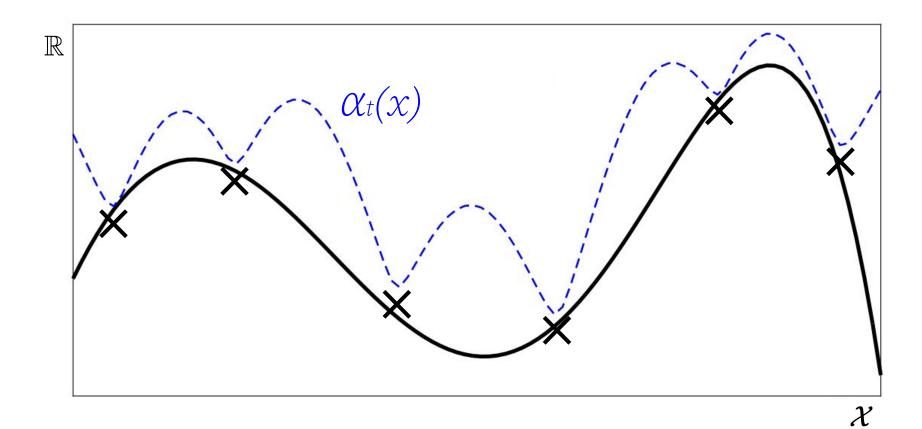
Unknown black-box f, and dataset of (x, y) pairs.

BACKGROUND



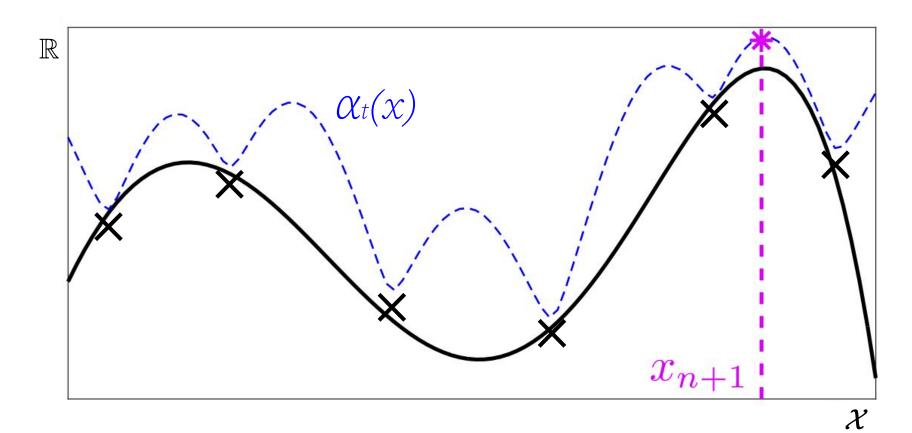
Can use probabilistic model to infer f, given dataset.

BACKGROUND

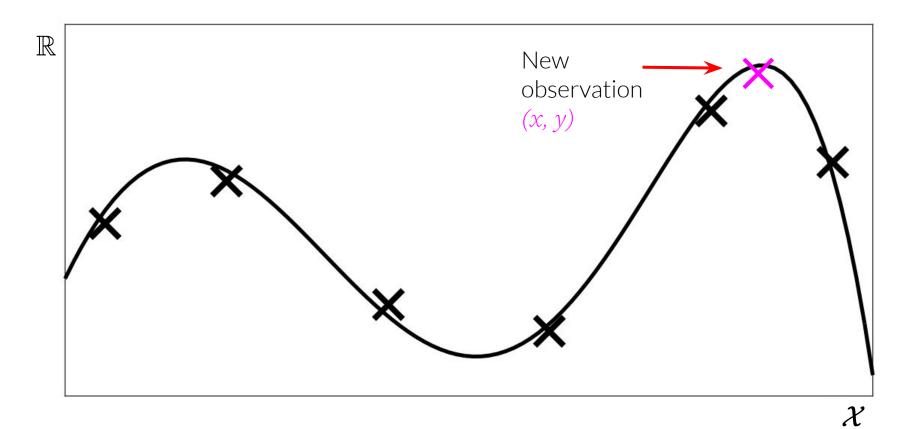


Define acquisition function using probabilistic model.

BACKGROUND



Optimize acquisition function \Rightarrow yields next point to query.



Query black-box f at x, observe y, and update dataset.

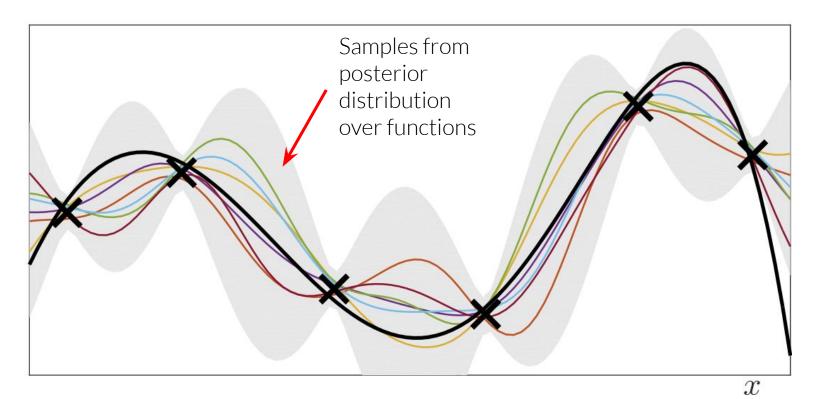
... Key step is line 2: defining and optimizing acquisition function.

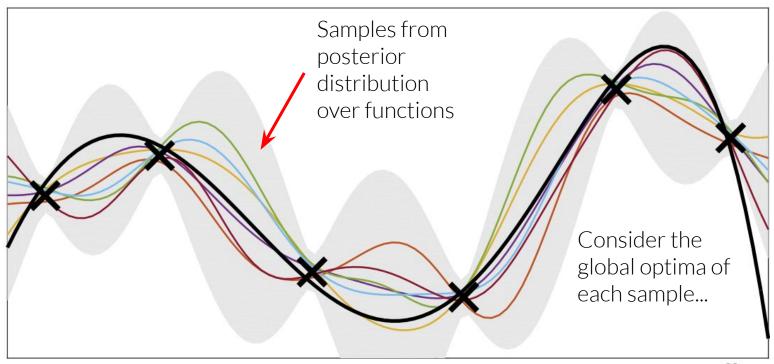
Algorithm 1 BAYESIAN OPTIMIZATION

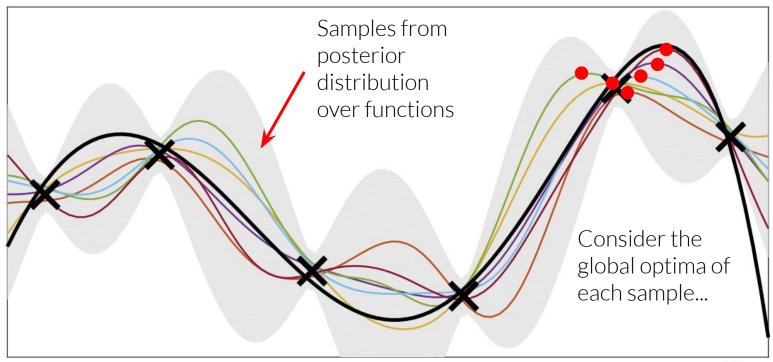
Input: dataset \mathcal{D}_1 , prior distribution p(f), algorithm \mathcal{A}

- 1: for t = 1, ..., T do
- 2: $x_t \leftarrow \arg \max_{x \in \mathcal{X}} \alpha_t(x)$
- 3: $y_{x_t} \sim f(x_t) + \epsilon$
- 4: $\mathcal{D}_{t+1} \leftarrow \mathcal{D}_t \cup \{(x_t, y_{x_t})\}$

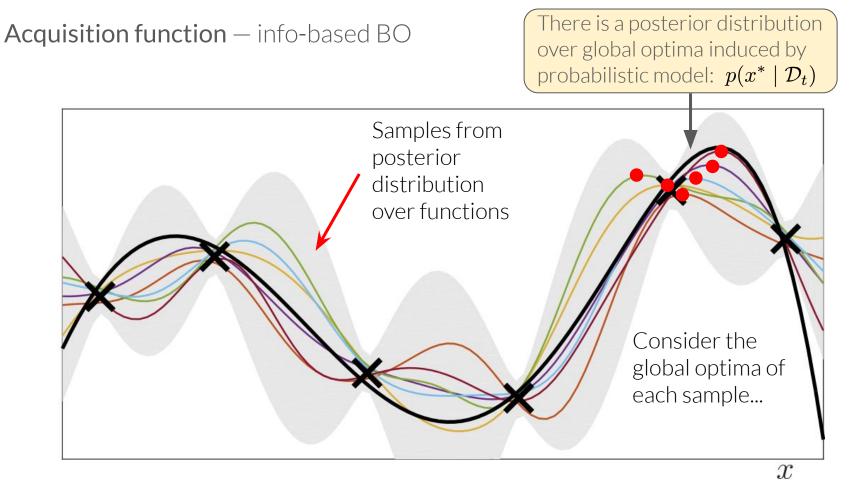
Output: final dataset \mathcal{D}_{T+1}







INFO-BASED BO



$\label{eq:acquisition function} Acquisition function - {\sf info-based} ~{\sf BO}$

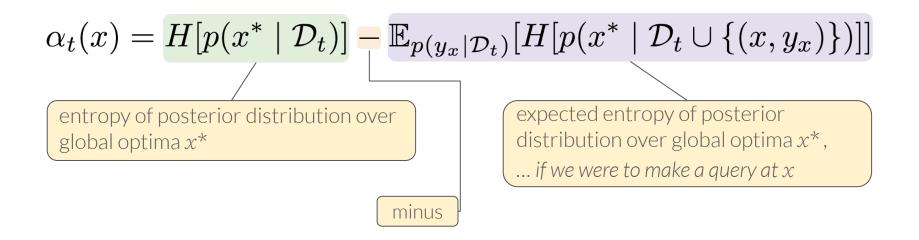
This leads us to the acquisition function: e.g. used in entropy search (ES), predictive entropy search (PES)

This leads us to the acquisition function: e.g. used in entropy search (ES), predictive entropy search (PES)

$$\begin{aligned} \alpha_t(x) &= H[p(x^* \mid \mathcal{D}_t)] - \mathbb{E}_{p(y_x \mid \mathcal{D}_t)}[H[p(x^* \mid \mathcal{D}_t \cup \{(x, y_x)\})]] \\ \text{entropy of posterior distribution over} \\ \text{global optima } x^*. \end{aligned}$$

$$\begin{aligned} \text{expected entropy of posterior} \\ \text{distribution over global optima } x^*, \\ \dots \text{ if we were to make a query at } x \end{aligned}$$

This leads us to the acquisition function: e.g. used in entropy search (ES), predictive entropy search (PES)



"Expected information gain" (EIG) — expected decrease in entropy if we were to query f at x.

There exists a clever way to compute/optimize this (from work on PES)...

How to compute and optimize it? **Two stages:**

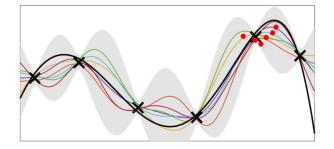
How to compute and optimize it? **Two stages:**

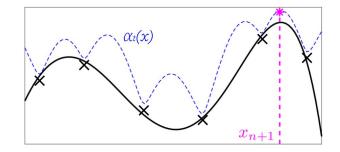
1) Before acquisition optimization:

- Generate posterior samples of global optima.
- (⇒ run optimization algorithm on function samples to get optima).

2) Acquisition optimization:

- For any x, approximate EIG $\alpha_t(x)$ using these samples.
- Allows us to optimize acquisition function.





Benefits: generate samples only once. Then cheaper during iterative acquisition opt.

(previous was existing work, following is new)

What acquisition function do we use for *InfoBAX*?

Recall goal of BAX:

- Estimate a computable function property using a limited budget of queries.
- (equivalently: Estimate output of algorithm A.)

(previous was existing work, following is new)

What acquisition function do we use for InfoBAX?

Recall goal of BAX:

- Estimate a computable function property using a limited budget of queries.
- (equivalently: Estimate output of algorithm A.)

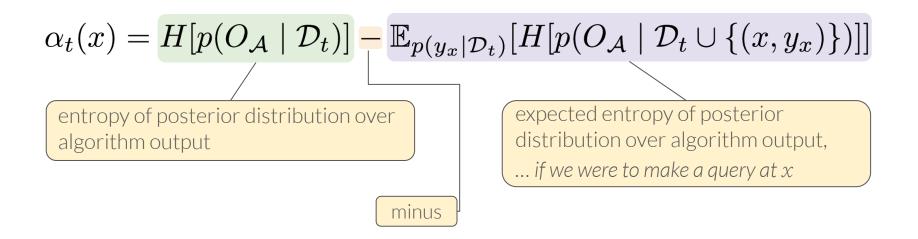
Similar to info-based BO, *take a BOED strategy*:

- Denote the output of algorithm A (computable function property): $O_{\mathcal{A}}$
- We care about posterior over output: $p(O_{\mathcal{A}} \mid \mathcal{D}_t)$
- And its entropy: $H[p(O_{\mathcal{A}} \mid \mathcal{D}_t)]$

Want to make queries to best reduce this uncertainty over algorithm output.

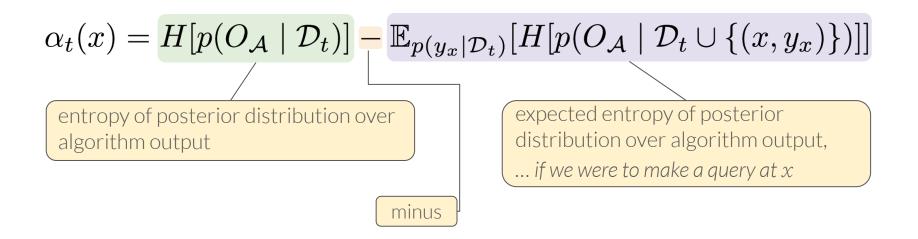
Can also define an expected information gain (EIG) acquisition function:

Can also define an expected information gain (EIG) acquisition function:



"Expected decrease in entropy on the **algorithm output**, if we were to query f at x."

Can also define an expected information gain (EIG) acquisition function:



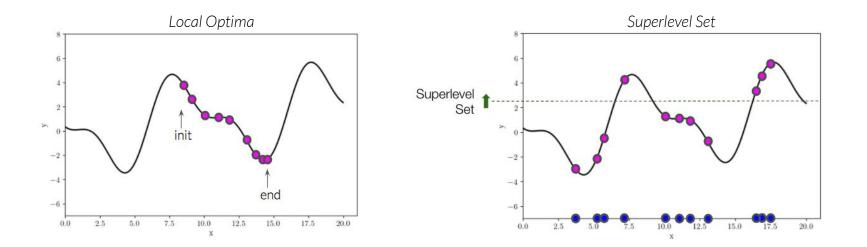
"Expected decrease in entropy on the **algorithm output**, if we were to query f at x."

... how can we compute (and optimize) this?

BAYESIAN ALGORITHM EXECUTION

Definition:

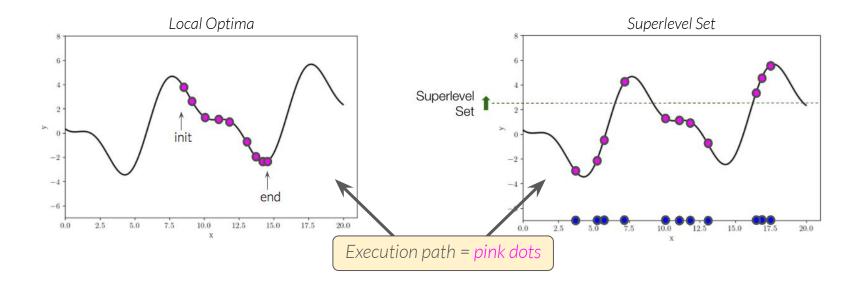
Define the *execution path of algorithm* A as the sequence of queries ((x, y) pairs) that A would make on the black-box function f.



BAYESIAN ALGORITHM EXECUTION

Definition:

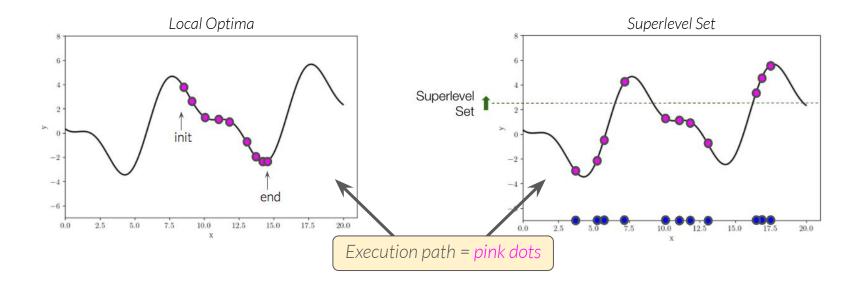
Define the *execution path of algorithm* A as the sequence of queries ((x, y) pairs) that A would make on the black-box function f.



BAYESIAN ALGORITHM EXECUTION

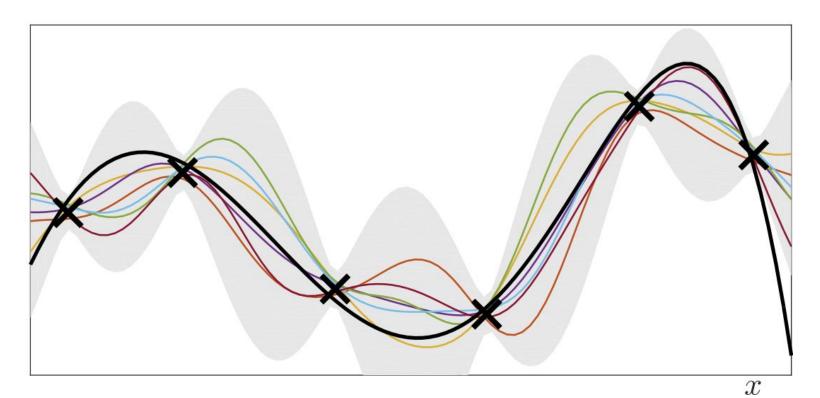
Definition:

Define the *execution path of algorithm* A as the sequence of queries ((x, y) pairs) that A would make on the black-box function f.

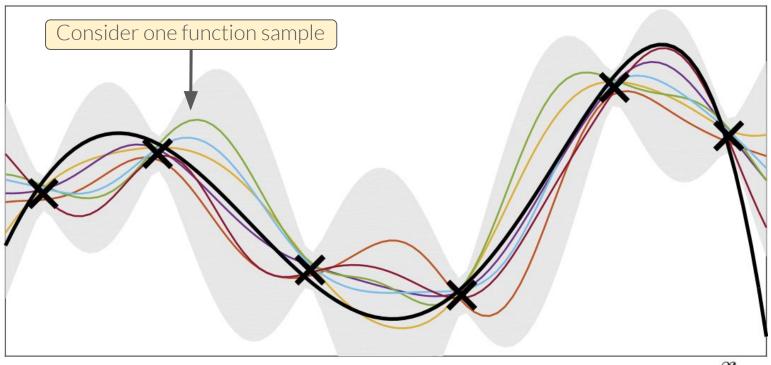


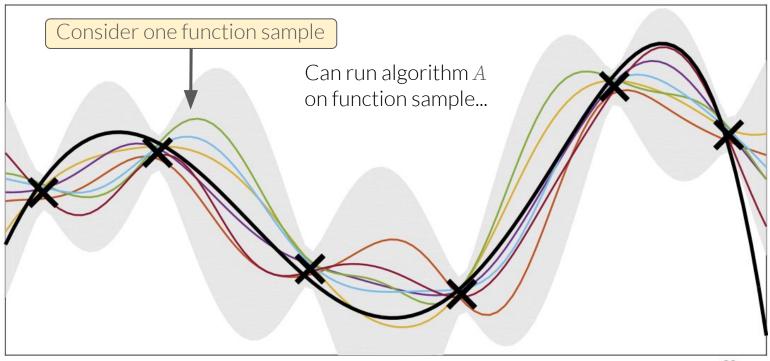
Note: we don't know true execution path.

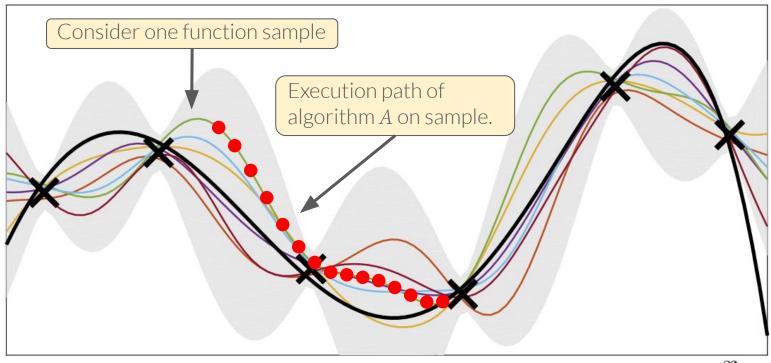
- (Since we are not running A on $f \Rightarrow$ this require too many queries)
- But given a model for *f*, we have a *posterior distribution over execution paths*

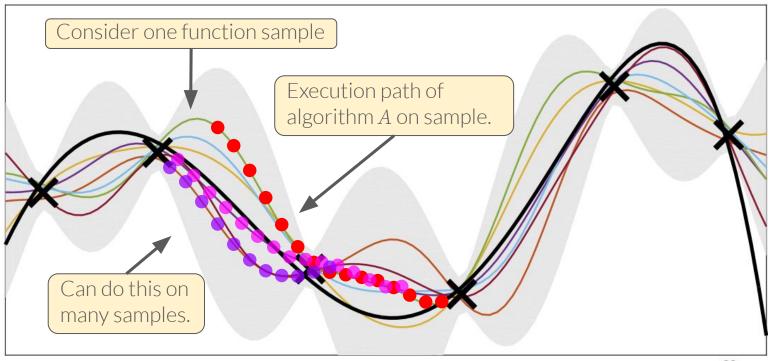


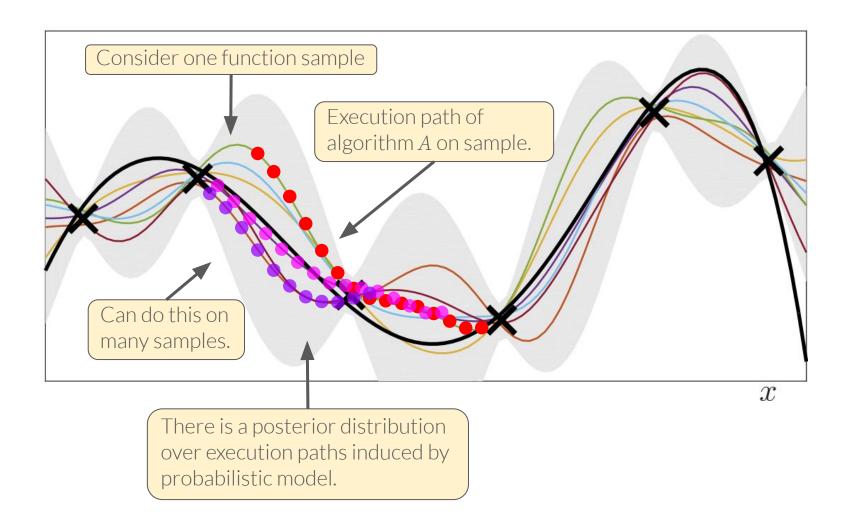
INFO-BASED BO











How to compute and optimize it? Two stages:

Similar to info-based BO!

How to compute and optimize it? **Two stages:**

1) Before acquisition optimization:

- Run algorithm *A* on posterior function samples to get posterior samples of execution path.

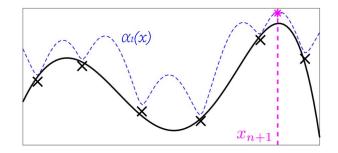
2) Acquisition optimization:

- For any x, approximate EIG $\alpha_t(x)$ using these samples

Similar to info-based BO!

- Allows us to optimize acquisition function

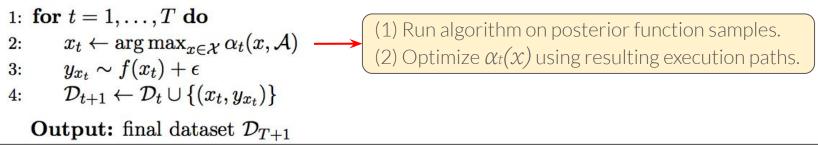




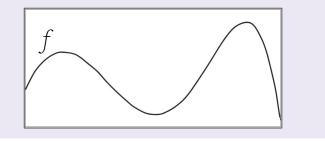
- \Rightarrow Similar structure as info-based BO, but replace global opt algorithm with A.
 - Same benefits: generate samples only once. Then cheaper during iterative acquisition opt.
- \Rightarrow Look in paper for math on computing EIG $\alpha_t(x)$ with samples.

Algorithm 1 INFOBAX

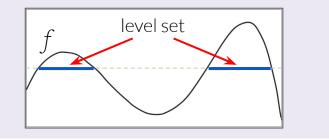
Input: dataset \mathcal{D}_1 , prior distribution p(f), algorithm \mathcal{A}



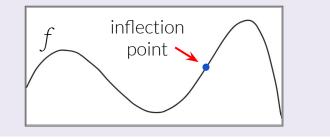
InfoBAX — one-slide summary of the full story



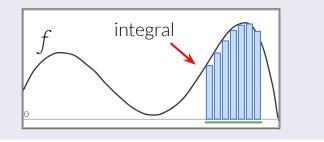
InfoBAX — one-slide summary of the full story



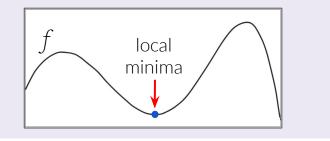
InfoBAX — one-slide summary of the full story



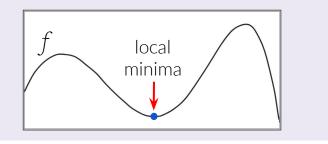
InfoBAX — one-slide summary of the full story



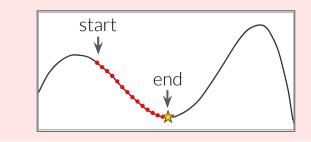
InfoBAX – one-slide summary of the full story



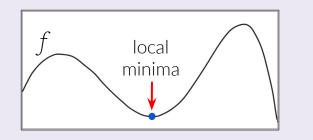
Suppose we have a black-box function *f* and a **property of interest**



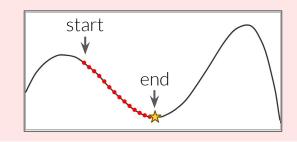
Suppose property is **computable** \Rightarrow there exists an algorithm A (of any budget)



Suppose we have a black-box function *f* and a **property of interest**

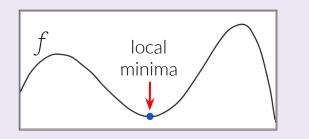


Suppose property is **computable** \Rightarrow there exists an algorithm A (of any budget)

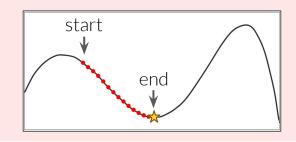


 \Rightarrow Goal: estimate the property (i.e. output of A) with minimal function queries

Suppose we have a black-box function *f* and a **property of interest**



Suppose property is **computable** \Rightarrow there exists an algorithm A (of any budget)

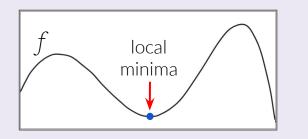


 \Rightarrow Goal: estimate the property (i.e. output of A) with minimal function queries

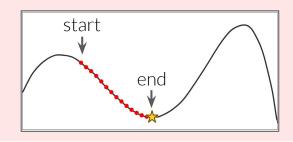
Run **InfoBAX**, a sequential algorithm (similar in structure to BO)

1: for
$$t = 1, ..., T$$
 do
2: $x_t \leftarrow \arg \max_{x \in \mathcal{X}} \alpha_t(x, \mathcal{A})$
3: $y_{x_t} \sim f(x_t) + \epsilon$
4: $\mathcal{D}_{t+1} \leftarrow \mathcal{D}_t \cup \{(x_t, y_{x_t})\}$

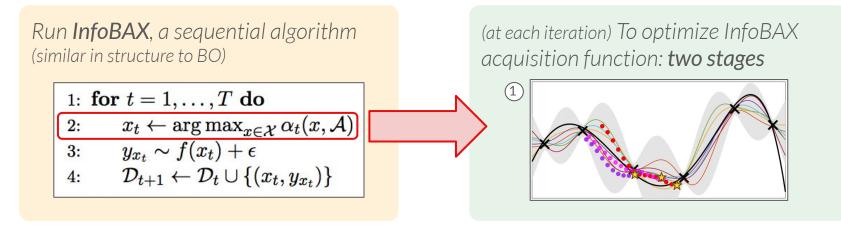
Suppose we have a black-box function f and a **property of interest**



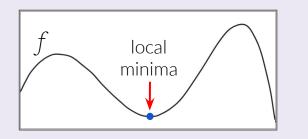
Suppose property is **computable** \Rightarrow there exists an algorithm A (of any budget)



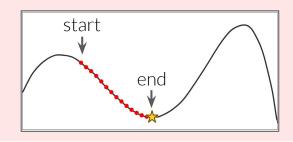
 \Rightarrow Goal: estimate the property (i.e. output of A) with minimal function queries



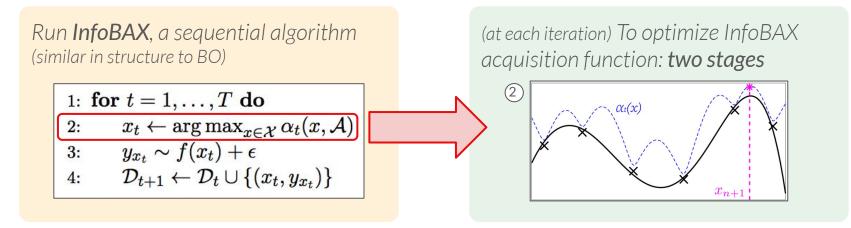
Suppose we have a black-box function f and a **property of interest**



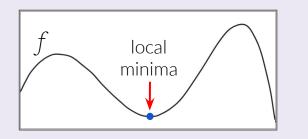
Suppose property is **computable** \Rightarrow there exists an algorithm A (of any budget)



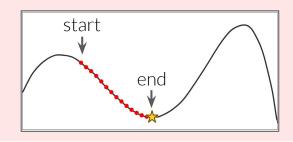
 \Rightarrow Goal: estimate the property (i.e. output of A) with minimal function queries



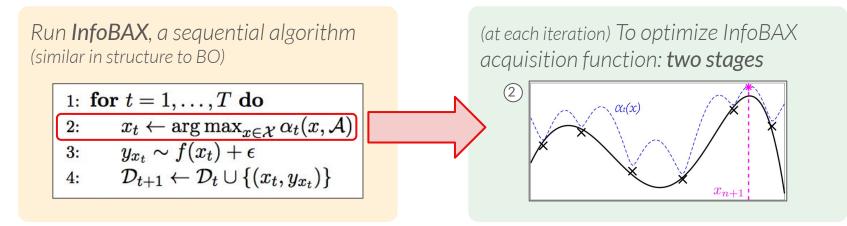
Suppose we have a black-box function *f* and a **property of interest**



Suppose property is **computable** \Rightarrow there exists an algorithm A (of any budget)



 \Rightarrow Goal: estimate the property (i.e. output of A) with minimal function queries



 \Rightarrow Output: posterior estimate of property (i.e. output of A)

BAX: Demos and Applications

APPLICATIONS of BAX

Applications

We demo BAX to estimate a few different properties of black-box functions (trying to show the breadth of what we can estimate)

Three applications:

- Estimating shortest paths in graphs
- Bayesian local optimization
- Estimating top-*k* optima

Black-box function over edges in a network

Optimization variants

Application: estimating shortest paths in graphs

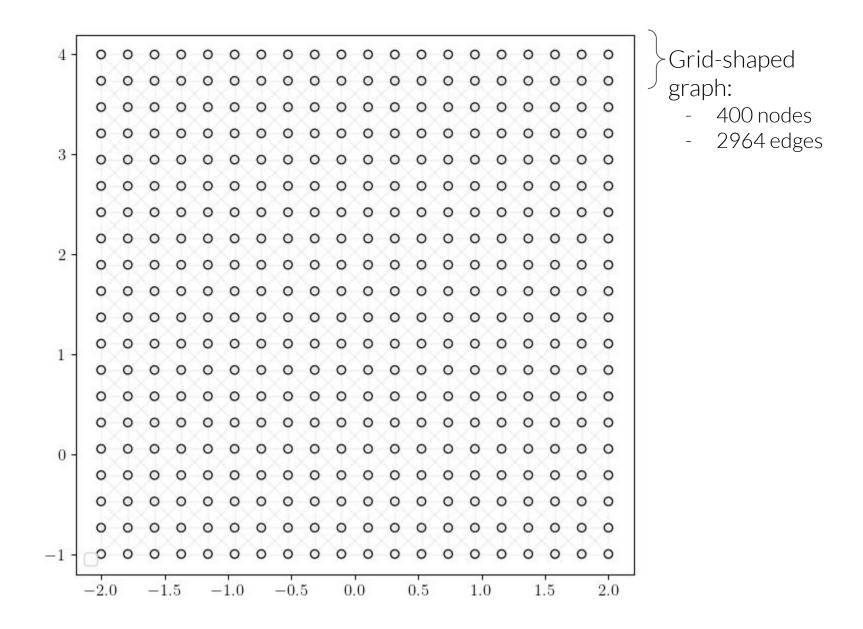
Graph traversal/search algorithms can define properties of a black-box function f defined on edge weights in a graph.

Example: real-world transportation network

(e.g. road, railway, shipping, air)

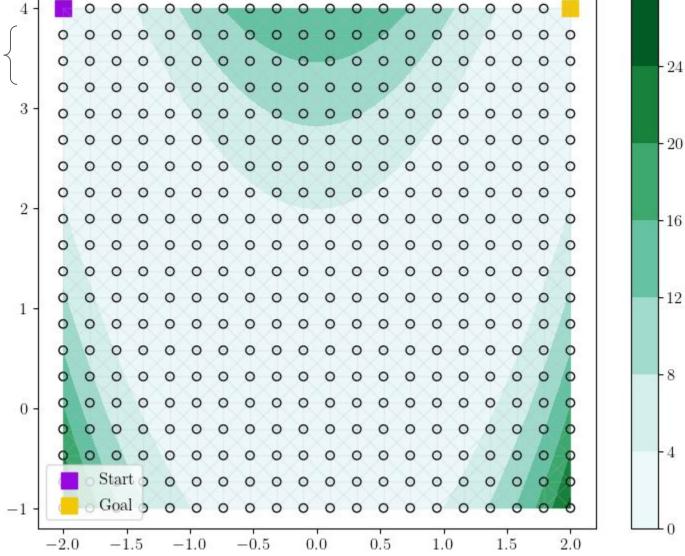
- Suppose we want to find shortest path from location A to location B.
- Shortest path depends on edge weights.
 - e.g. traffic, road conditions, weather, etc.
- It can be expensive to query edge weights
 - e.g. measure traffic/road/weather conditions via satellite.
 - e.g. determine/access shipping costs.
- **Goal**: adaptively query edge weights to estimate shortest path.

California road network.



Edge weights are given by 0 0 0 0 function f0 0 0 0 0 0 -24 (green). 0 0 0 0 0 0 0 3 -0 0 -200 0 0 0 0 0 2 --16 0 0 0 0 0 -12 1 -0 0 0 0 -8 0 -0 0 0 0 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 -1 -0.0 0.5 1.0 1.5 -0.52.0 -1.5-1.0-2.0

Want to know shortest path between start and goal.



28

-24

-20

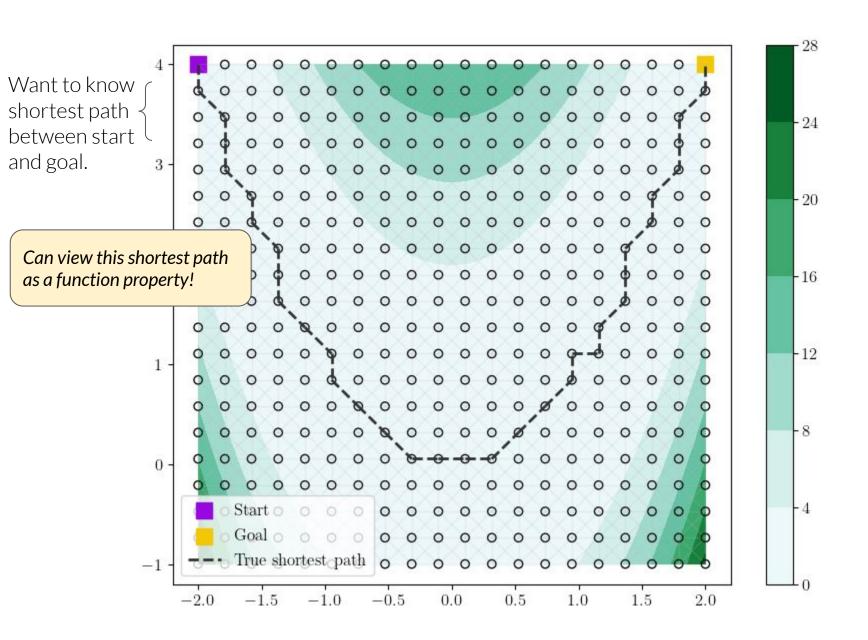
-16

-12

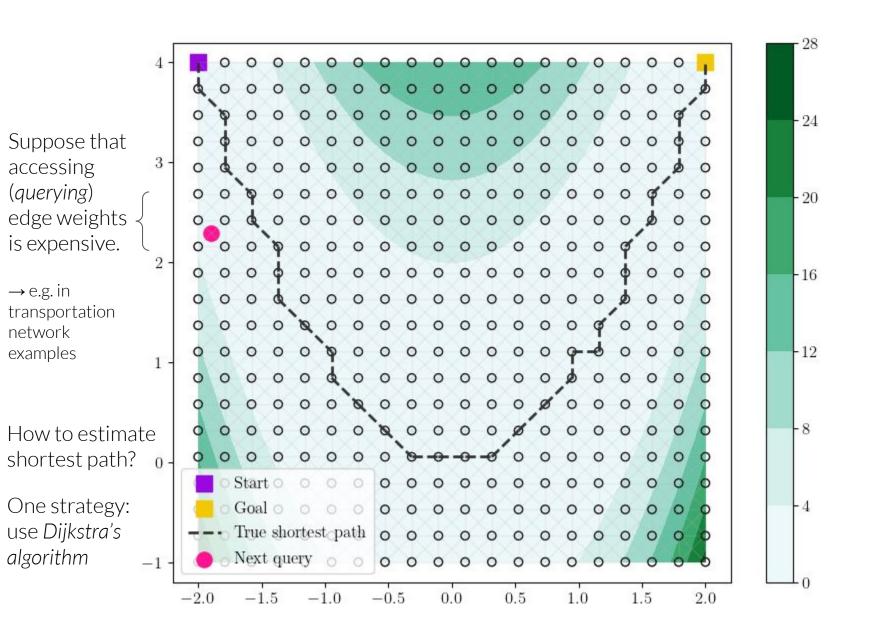
-8

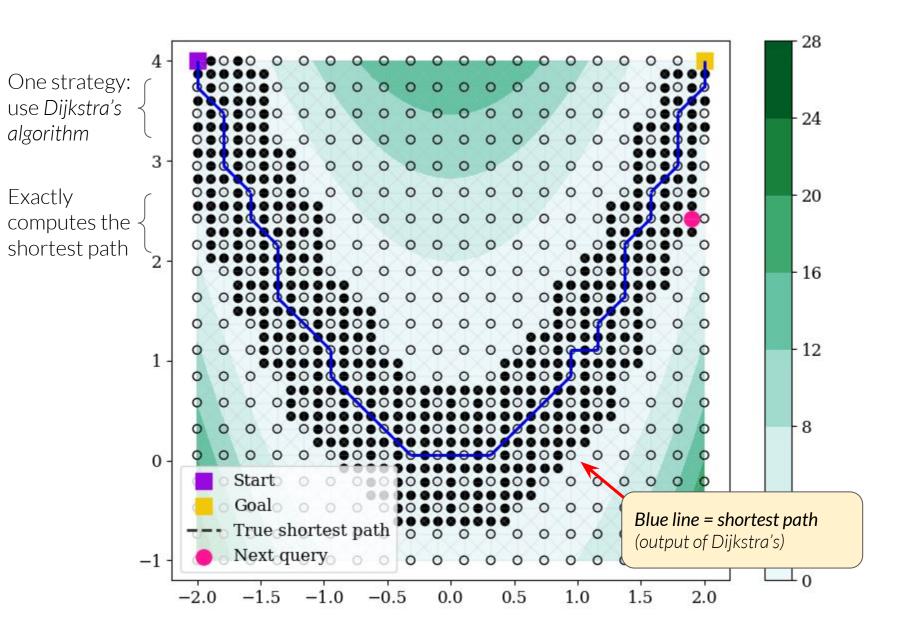
-4

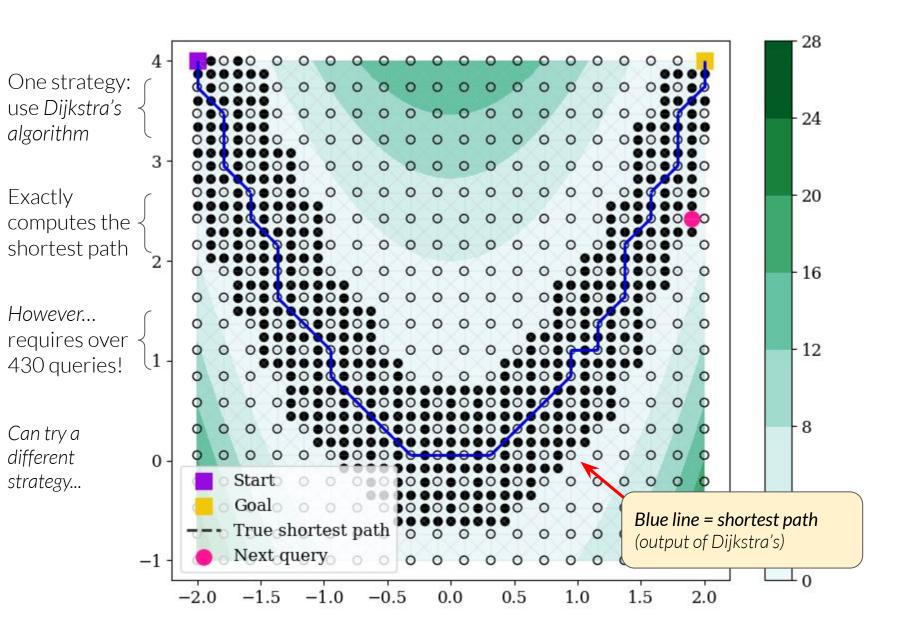
0 0 0 0 0 Want to know 0 0 0 shortest path 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 between start and goal. 3 -0 2 -0 1 -0 0 0 0 0 -0 0 Start o 0 0 0 0 Goal o 0 0 0 0 0 --- True shortest path 0 0 0 0 0 0 0 0 0 0 -1 -0.0 0.5 1.0 1.5 -1.0-0.5-1.52.0-2.0



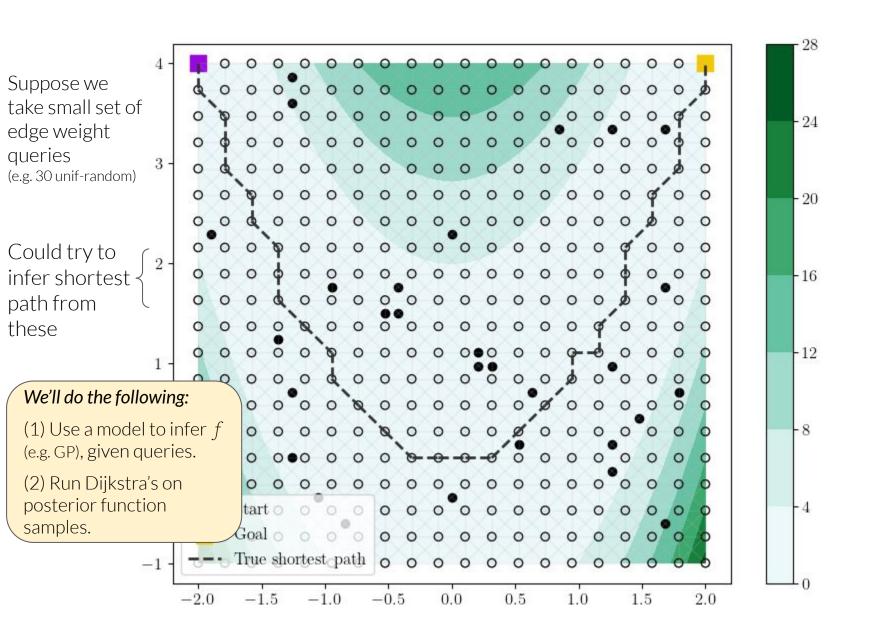
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ø -24 Suppose that 0 0 0 0 0 0 0 0 0 0 3 accessing (querying) 0 0 0 0 0 0 0 0 0 0 -20edge weights Ø is expensive. 0 0 Ø 2 --16 \rightarrow e.g. in transportation 0 0 0 0 0 0 0 Ø network 0 0 -12 examples 1 -Q 0 0 -8 0 0 0 0 0 -Start O Goaloo -4 0 0 0 0 --- True shortest path o o Next query 0 0 0 0 0 0 0 0 0 0 -1 -0.0 0.5 -0.51.0 1.5 -1.5-1.02.0-2.0



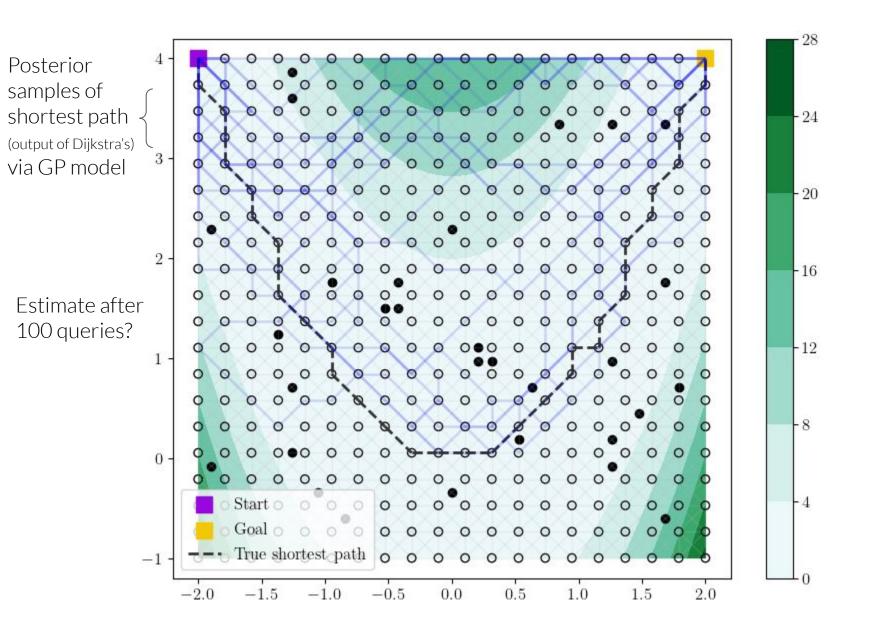


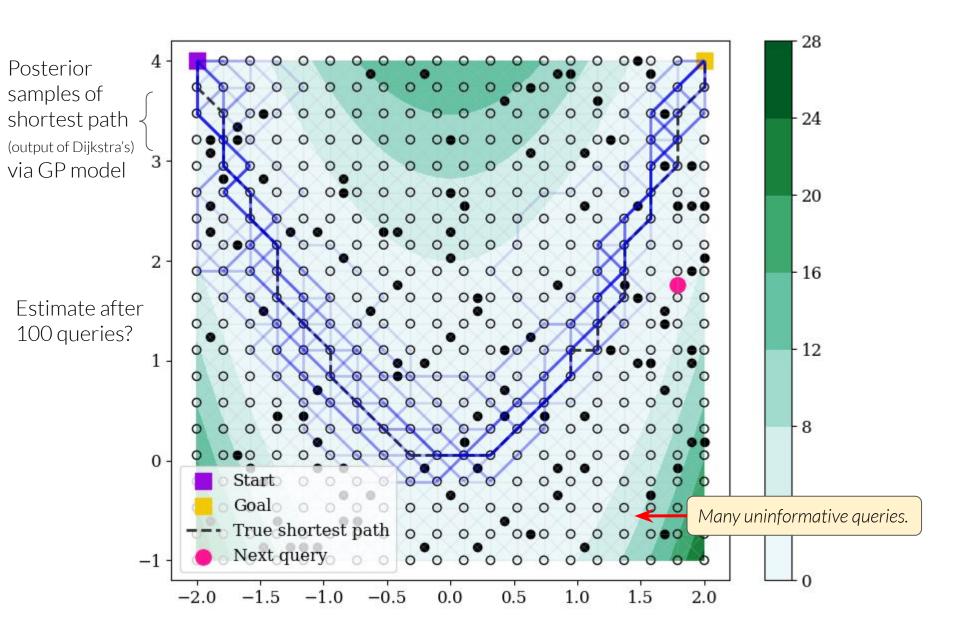


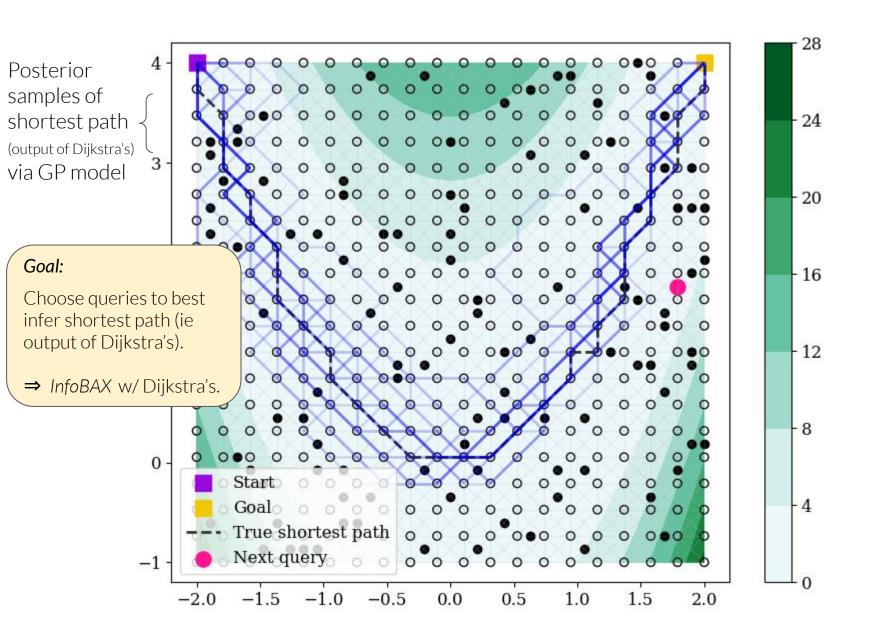
Suppose we take small set of 0 0 -24 edge weight 0 0 0 0 0 0 0 0 0 0 0 queries 3 -(e.g. 30 unif-random) 0 0 0 0 -200 0 0 0 0 0 0 0 0 0 Could try to -16 infer shortest path from 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 these 0 000 0 0 -12 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 OØ Õ -8 0 -Start O -4 0 0 0 0 0 Goal 0 0 --- True shortest path o o o o 0 0 0 -1 -0.5 1.5 -0.50.0 1.0 -1.5-1.02.0-2.0



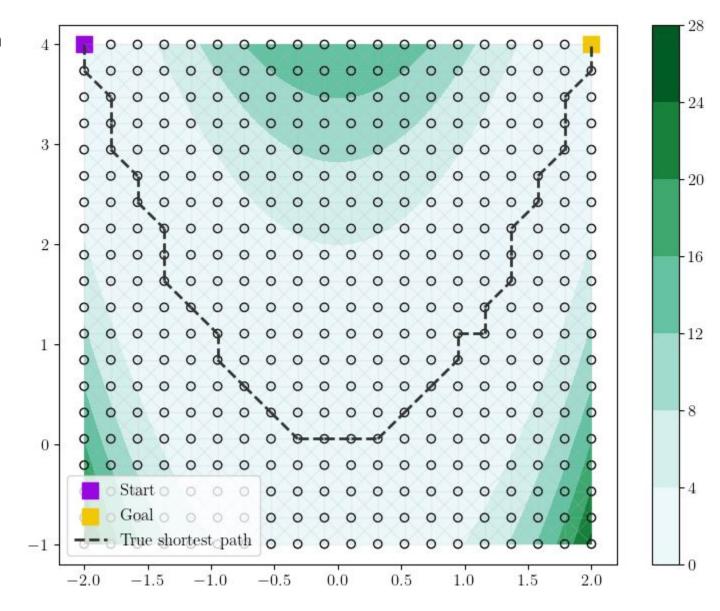
Posterior samples of shortest path -24 0 0 0 (output of Dijkstra's) 3 -0 0 0 0 via GP model -202 --16 0 0 Õ -12 0 0 0 1 -0 0 0 0 Õ -8 0 0 0 -Start O -4 0 0 Goal o 0 0 --- True shortest path o o -1 -0.0 0.5 1.0 1.5 -1.0-0.52.0 -2.0-1.5



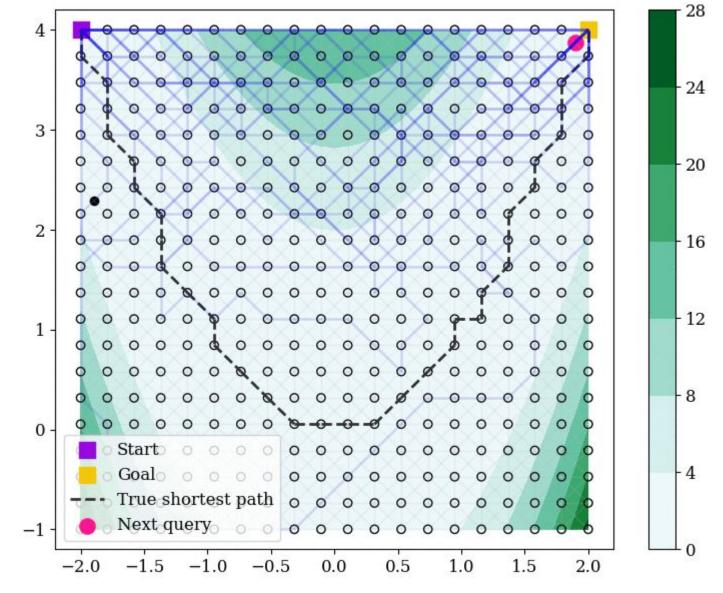




InfoBAX in action \rightarrow

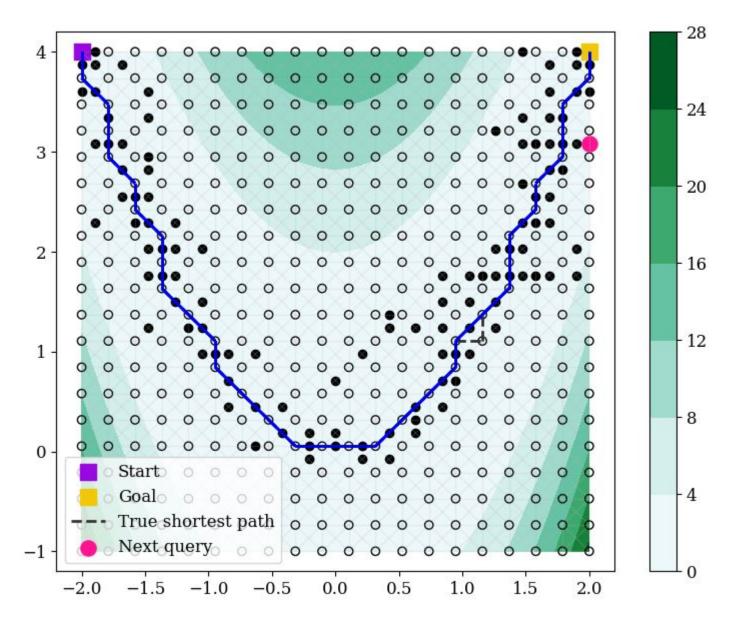


InfoBAX in action \rightarrow

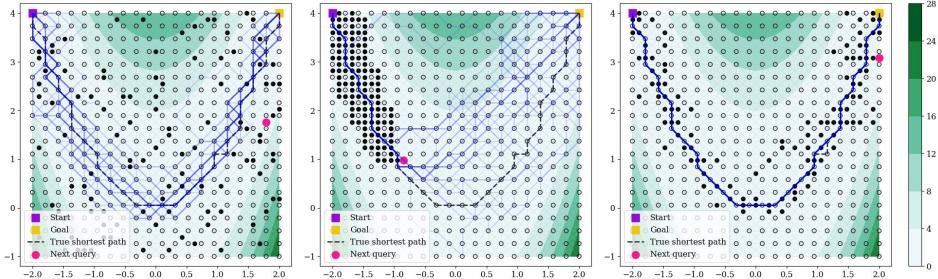


InfoBAX in action \rightarrow

After 100 queries.



Comparison after **100 queries**:



Application: Bayesian local optimization

Application: Bayesian local optimization

BO (typically) aims to estimate global optima.

However, many *local optimization* algorithms only aim to find a local optima (nearby some initial point)

- e.g. gradient descent, evolutionary algorithms, nelder-mead/simplex, etc.

Local opt can be very effective for certain settings (e.g. high dimensions), but can require large numbers of queries.

- Sometimes many redundant queries.
- Not effective if each query is very expensive.

We can use the local opt algorithms in a BAX procedure.

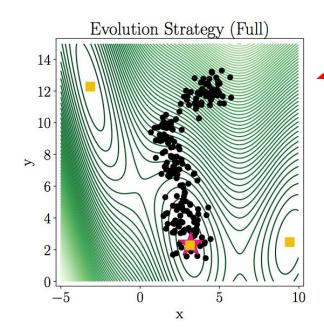
→ Yields local variants of BO parameterized by a local opt algorithm.

Overall intuition – view optimization as:

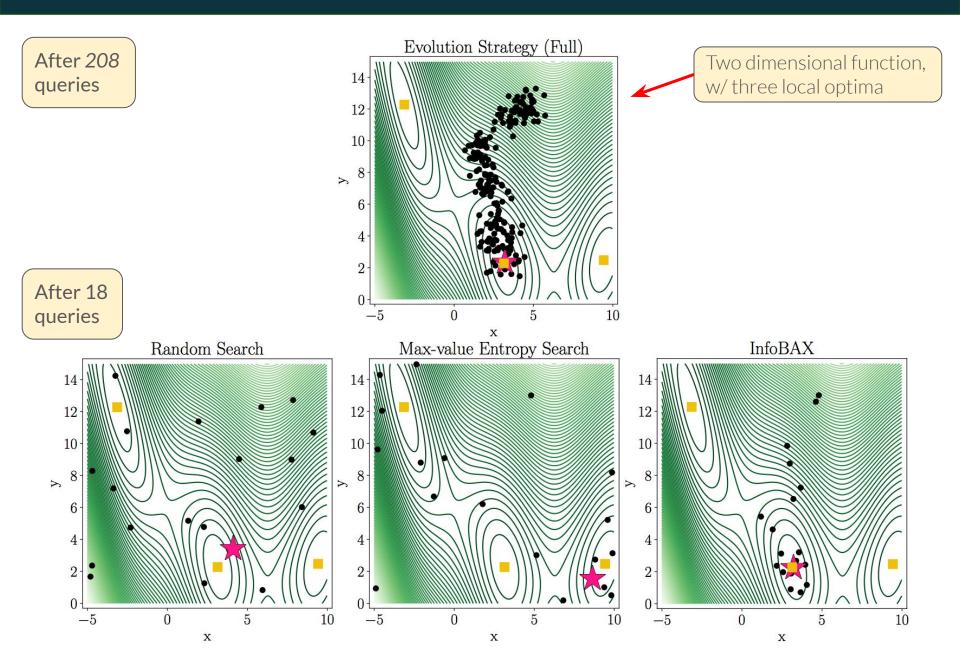
Trying to estimate the output of a local opt algo, given limited budget of queries.

APPLICATIONS of BAX – Bayesian local optimization

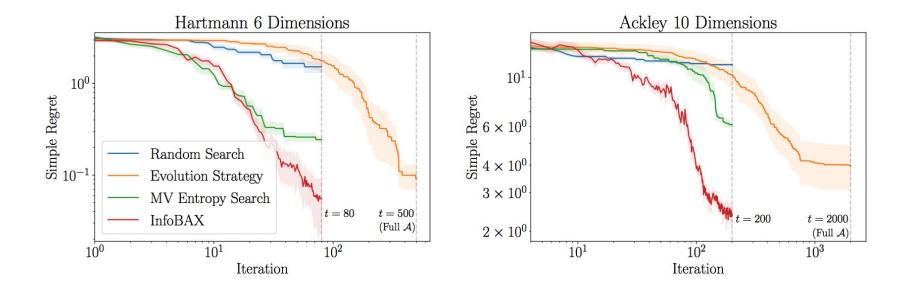
After 208 queries



APPLICATIONS of BAX – Bayesian local optimization



InfoBAX matches performance of Evolution Strategy, using <10% of the queries.



Future steps: try this out with a variety of local optimizers.

Application: top-k estimation

Suppose we have a large set of items.

- E.g. set of 500 catalyst materials / bulks.

Each item has a value under an expensive black-box function f.

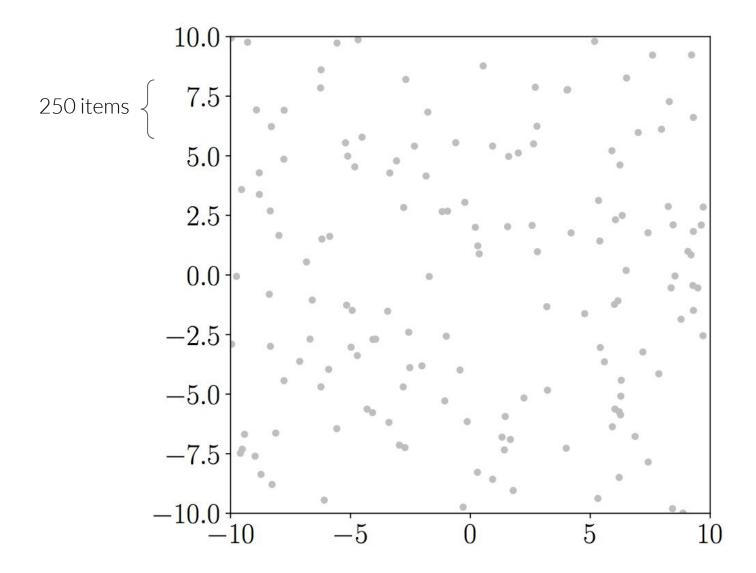
- E.g. each catalyst bulk has an activity level, which is expensive to measure (simulate).

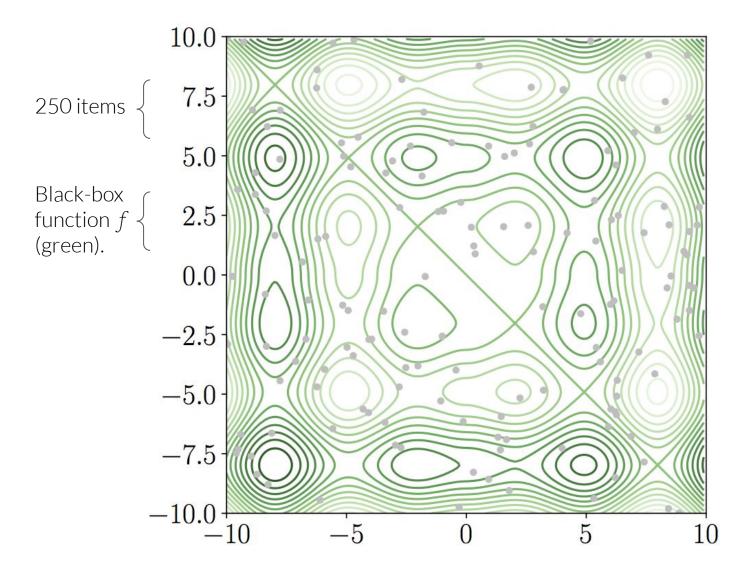
Suppose we want to determine the *top-k* items in the set.

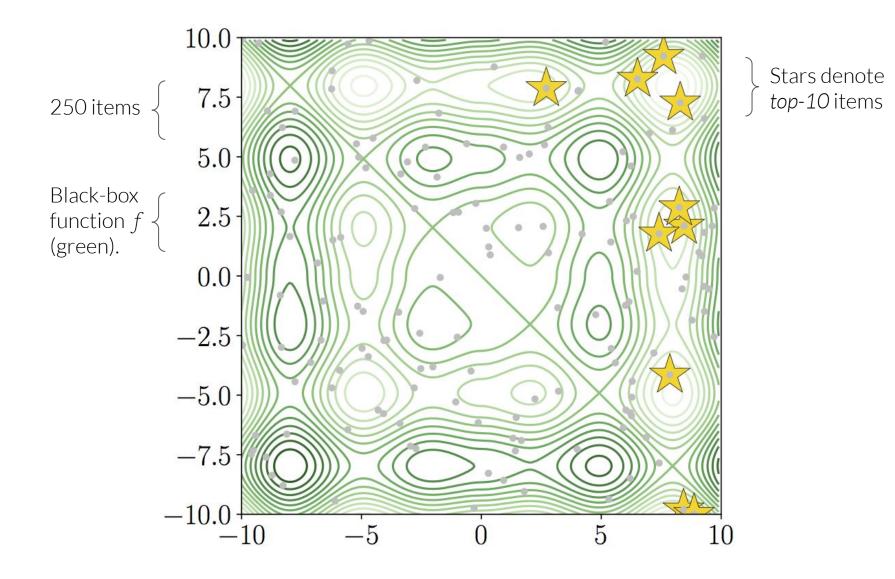
- E.g. the *top-10* catalysts, with highest activity \Rightarrow for experimental evaluation.
- (These *top-k* might then be filtered further based on additional tests)

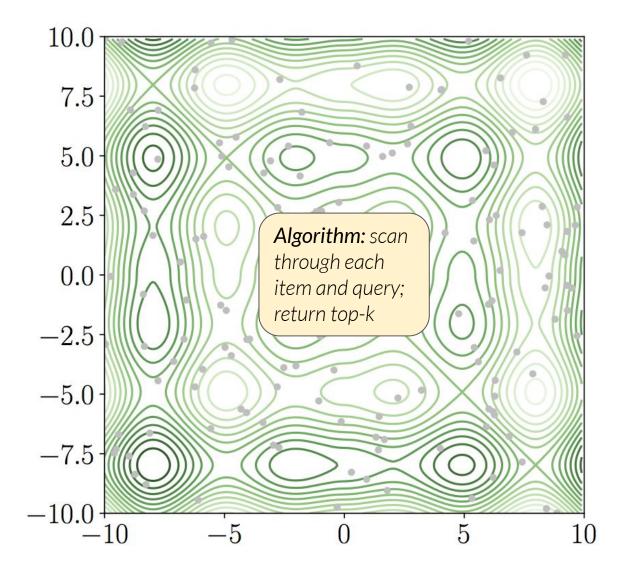
 \Rightarrow distinct from both global optimization (k=1) and level set estimation.

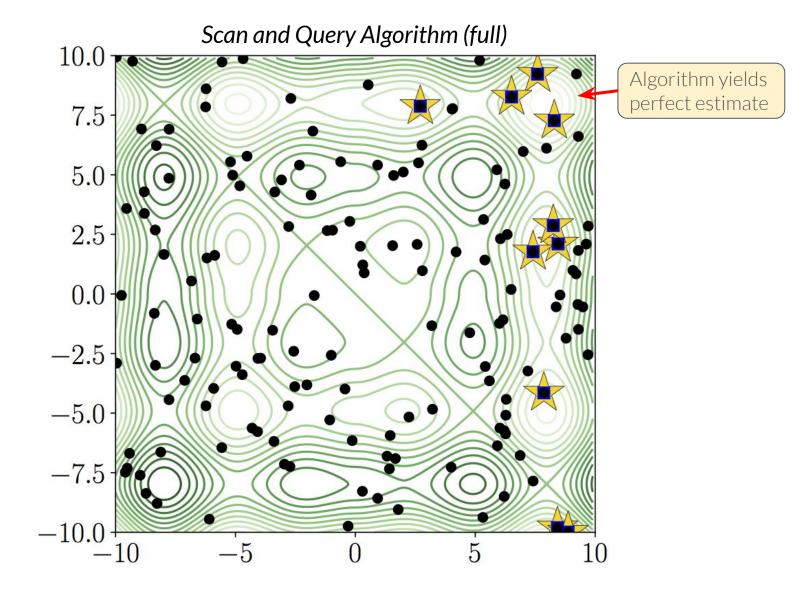
Visualizing this...

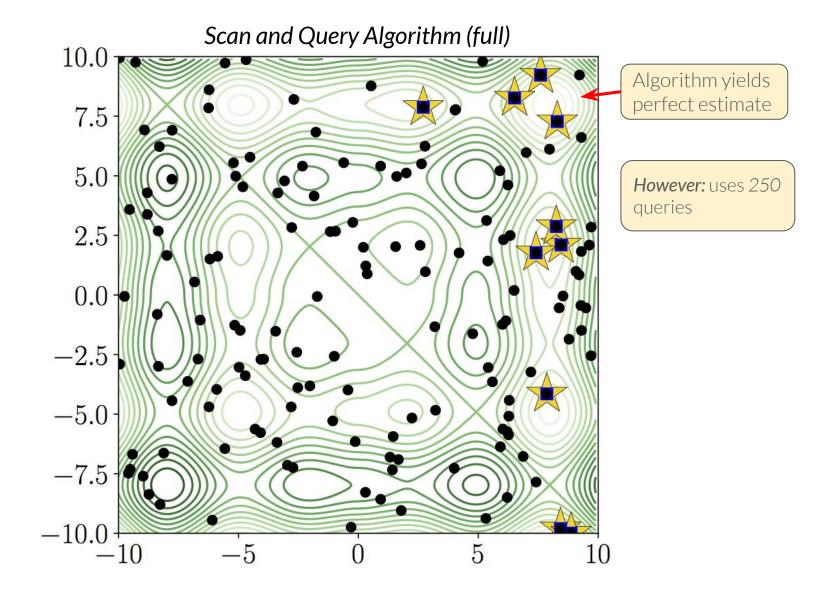


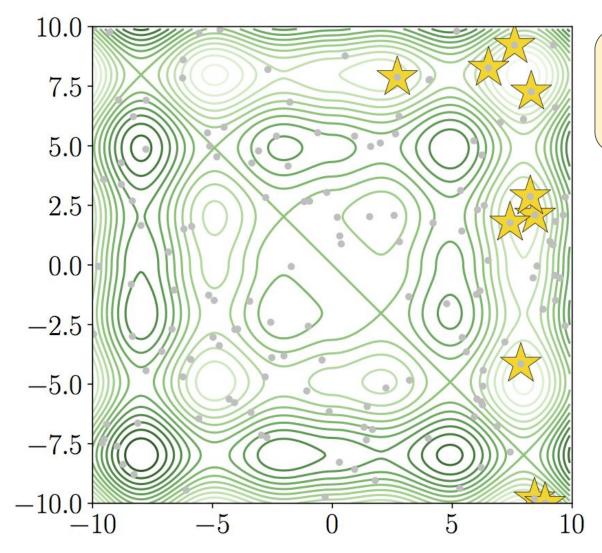




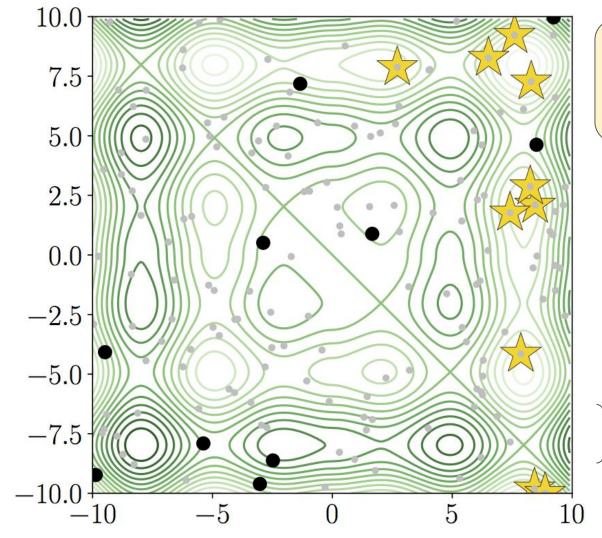






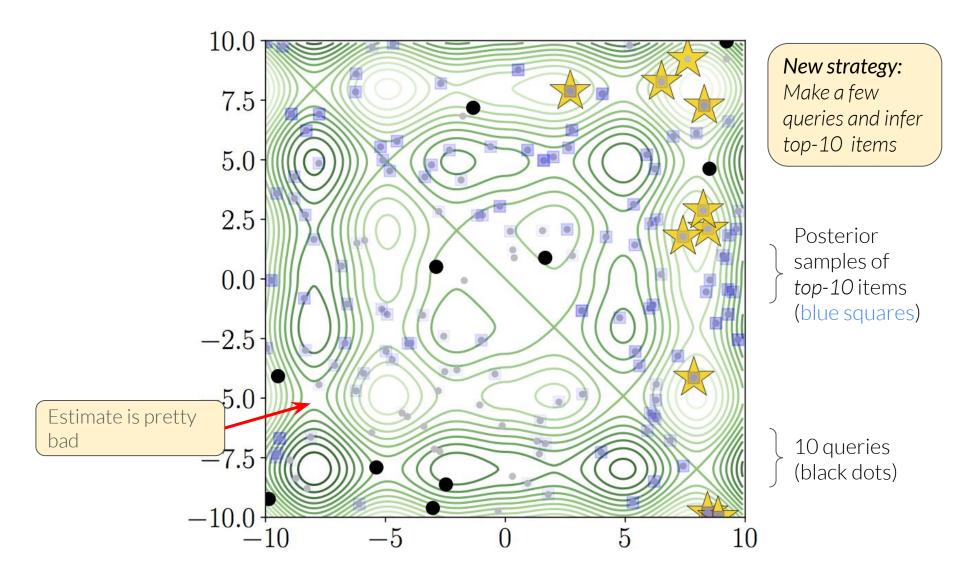


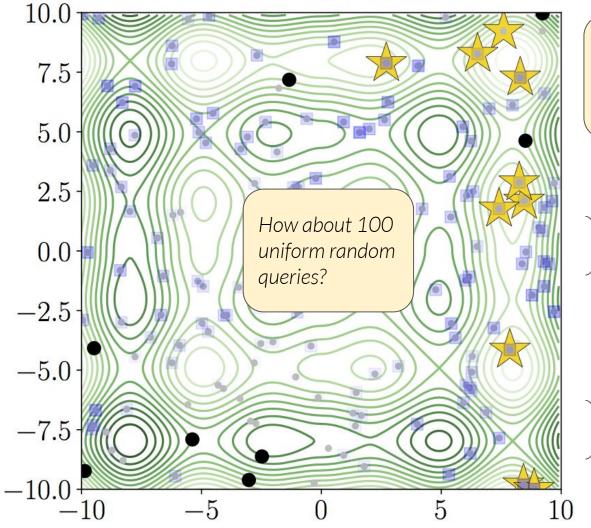
New strategy: Make a few queries and infer top-10 items



New strategy: Make a few queries and infer top-10 items

10 queries (black dots)

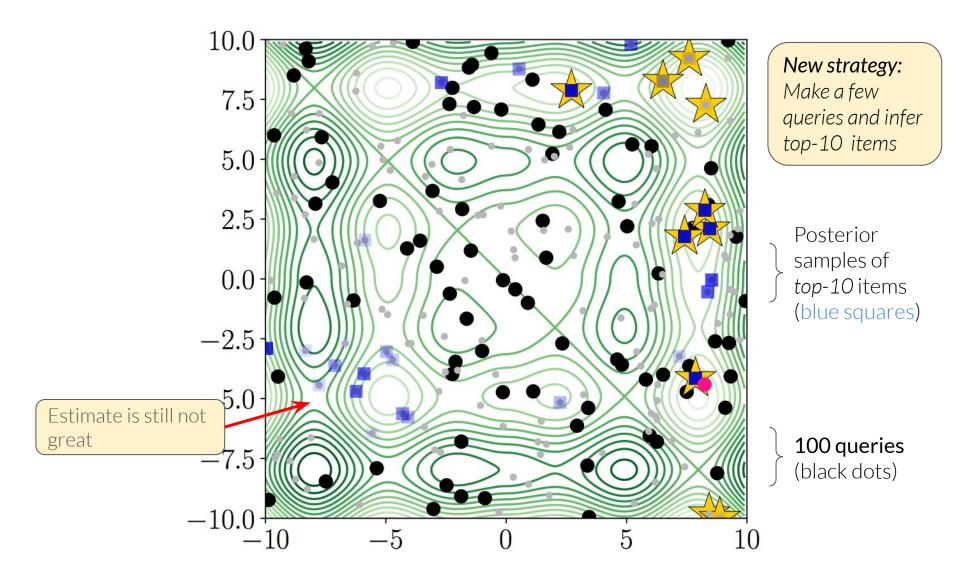


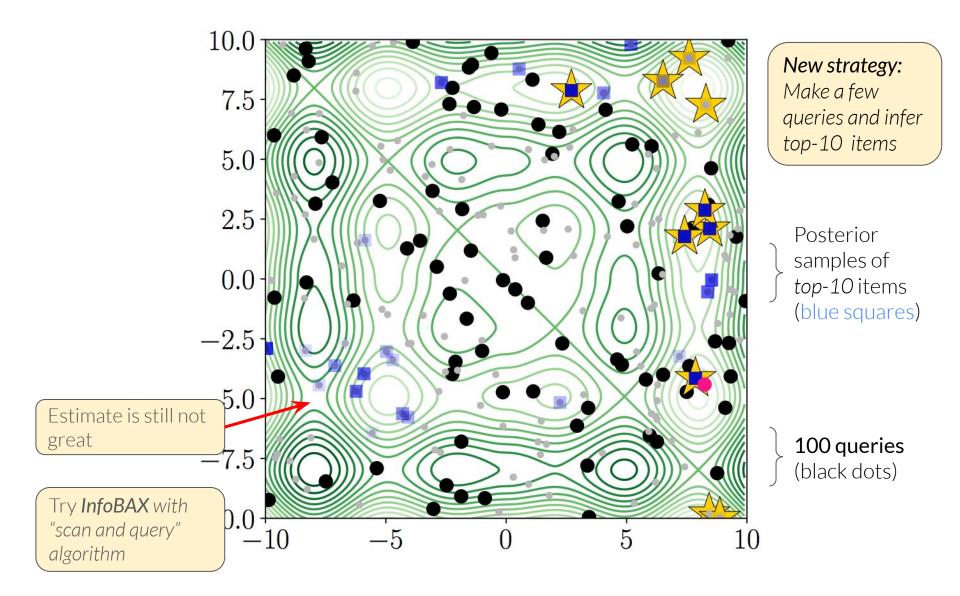


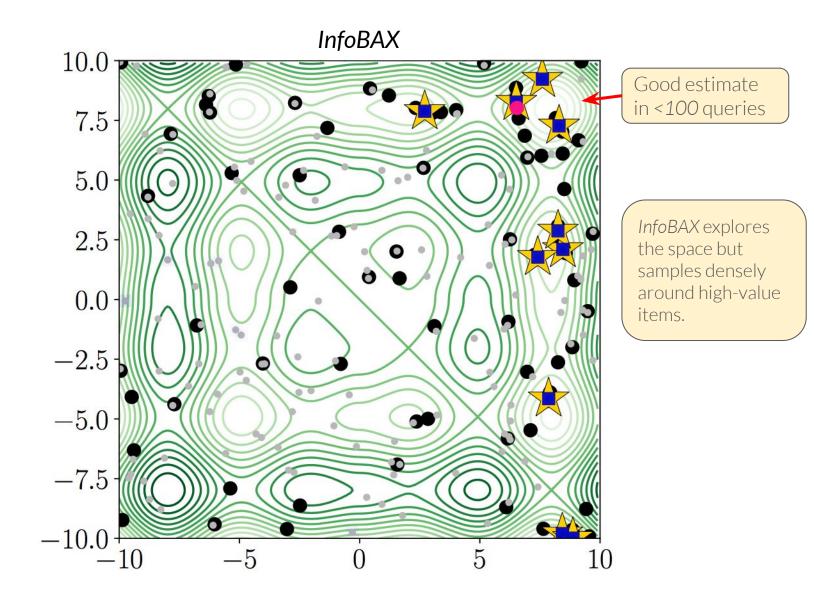
New strategy: Make a few queries and infer top-10 items

Posterior samples of *top-10* items (blue squares)

10 queries (black dots)







Final topic: software tools for uncertainty models

The BAX/BO procedures discussed all use predictive uncertainty models. "A model of the conditional distribution over output y given an input x" Final topic: software tools for uncertainty models

The BAX/BO procedures discussed all use predictive uncertainty models. "A model of the conditional distribution over output y given an input x"

⇒ in BAX we focus on GP models, but we may wish to run similar procedures on a variety of probabilistic models (*and to know if our models are good*)

Final topic: software tools for uncertainty models

The BAX/BO procedures discussed all use predictive uncertainty models. "A model of the conditional distribution over output y given an input x"

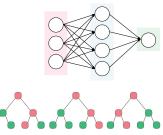
⇒ in BAX we focus on GP models, but we may wish to run similar procedures on a variety of probabilistic models (*and to know if our models are good*)

Types of uncertainty models:

"Classic" Bayesian models: GPs, various (non)lin/hier/add or other Bayesian models

Neural models: probabilistic neural networks, BNN, neural processes, deep generative models

Also: ensembles, quantile regression, conformal prediction, etc.

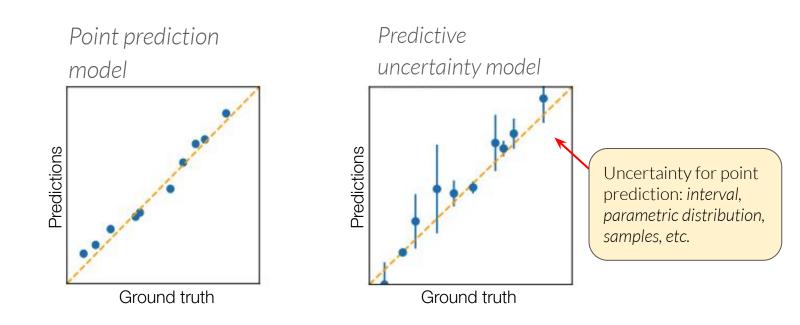


How can we assess quality of predictive uncertainty?

How can we assess quality of predictive uncertainty?

We can visualize point-predictions and predictive uncertainties on a given test set.

For each test point, plot **predictions** vs. **ground truth values**:



How can we empirically assess predictive uncertainty? Three important criteria are...

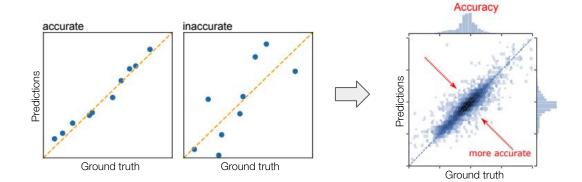
ASSESSING UNCERTAINTY

How can we empirically assess predictive uncertainty?

Three important criteria are...

Accuracy:

"How good is mean prediction? (agnostic to uncertainty)"



ASSESSING UNCERTAINTY

How can we empirically assess predictive uncertainty?

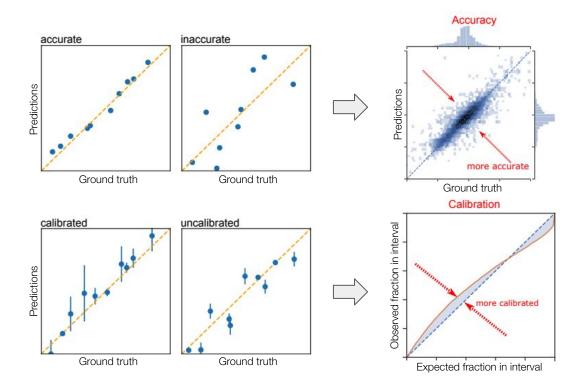
Three important criteria are...

Accuracy:

"How good is mean prediction? (agnostic to uncertainty)"

Calibration:

"Is predictive uncertainty distribution under/over confident? (ignoring prediction accuracy)"



ASSESSING UNCERTAINTY

How can we empirically assess predictive uncertainty?

Three important criteria are...

Accuracy:

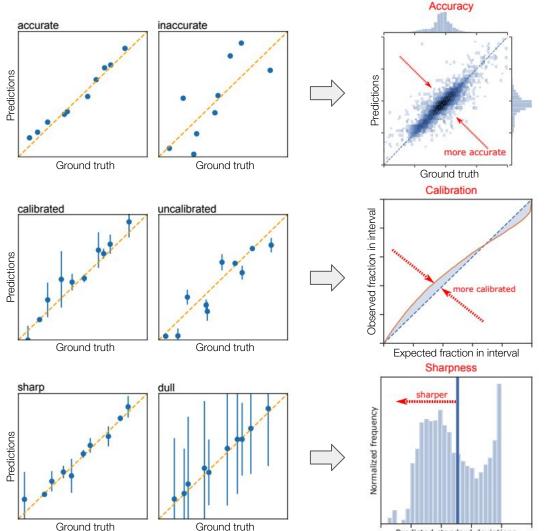
"How good is mean prediction? (agnostic to uncertainty)"

Calibration:

"Is predictive uncertainty distribution under/over confident? (ignoring prediction accuracy)"

Sharpness:

"On average, how confident are the predictions? (ignoring both of the above)"



Predicted standard deviations

Metrics for calibration

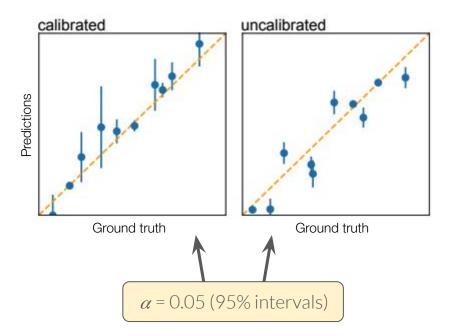
Suppose for each test point, our predictive uncertainty model returns a $(1-\alpha)$ -interval (e.g. 95% interval) of the predictive distribution.

Well-calibrated \Rightarrow "the (1- α)-interval covers the true value (1- α)-proportion of the time, for all α "

Metrics for calibration

Suppose for each test point, our predictive uncertainty model returns a $(1-\alpha)$ -interval (e.g. 95% interval) of the predictive distribution.

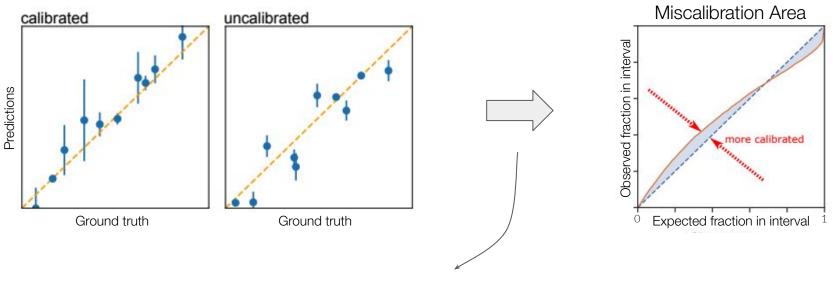
Well-calibrated \Rightarrow "the (1- α)-interval covers the true value (1- α)-proportion of the time, for all α "



Metrics for calibration

Suppose for each test point, our predictive uncertainty model returns a $(1-\alpha)$ -interval (e.g. 95% interval) of the predictive distribution.

Well-calibrated \Rightarrow "the (1- α)-interval covers the true value (1- α)-proportion of the time, for all α "



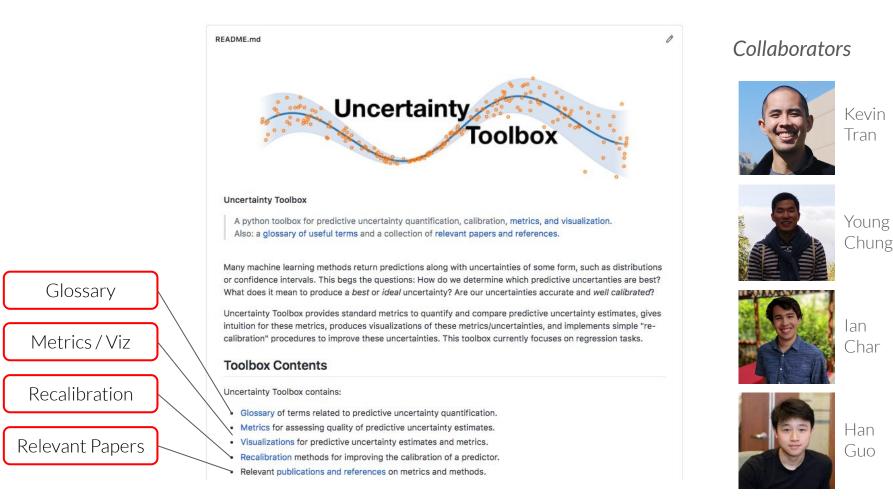
Can scan from α =0 to α =1, and compute:

(1) expected fraction of true values contained in interval

(2) observed fraction of true values contained in interval

Uncertainty Toolbox

- To help assess uncertainty quantification methods, we released Uncertainty Toolbox.
- "A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization" $\rightarrow github.com/uncertainty-toolbox/uncertainty-toolbox$



CONCLUSION

In summary...

We extend Bayesian optimization from targeting *global optima* to targeting *other function properties defined by algorithms*.

⇒ Introduce the task of BAX, and the information-based procedure InfoBAX

Paper link: <u>arxiv.org/abs/2104.09460</u>

Uncertainty Toolbox: github.com/uncertainty-toolbox/uncertainty-toolbox/uncertainty-toolbox

Thanks for listening!