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Extending Bayesian optimization 
from estimating global optima to 
estimating other function properties 
defined by algorithms



BACKGROUND

Suppose we have a noisy “black-box” function  f .

Background on Black-box Global Optimization

Assume:

•  Observations are noisy:   y ~ f(x) + ε

•  Each function query is costly
- E.g. in money, time, labor, etc.

• Goal: estimate the location of global optima of  f

• Budget of T queries

Can query f : Black-box 
function  f .

x y



Black-box Global Optimization — many applications

BACKGROUND

Hyperparameter Opt & Neural Architecture Search Systems Auto-tuning

Optimizing Laboratory Equipment & Machines Materials Discovery & Protocols
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BACKGROUND

A popular method is Bayesian optimization (BO)

● Leverages a probabilistic model of  f  to sequentially choose queries.

● The model can:

○ incorporate prior beliefs about  f  (e.g. smoothness)

○ tell us where we are certain vs uncertain about  f

● ⇒ Sample efficient optimization.

Probabilistic model of  f Use model to choose queries



Estimating other properties

BEYOND GLOBAL OPTIMA

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:
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● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)
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Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- ML model training

- HPO / NAS

- Systems tuning

Local optima Top-k optima
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Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- HPO / NAS

- Systems tuning

- Laboratory equipment / machines

Applications

Objective 1
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Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- Catalyst design

- Active learning / weak supervision

- Environmental monitoring

Applications



Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- Drug discovery

- Fraud detection

- Targeted opinion polling

Applications

(molecules)



Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- High throughput materials 

   design/discovery

Applications

(compounds)



Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- Target localization (airborne radar)

- Edge detection (computer vision)

- Biology / microbiology (phase shifts)

Applications

(Frazier, 2012)



Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- Probabilistic modeling (marginal 
distributions, normalization constants)

- Estimating center of mass (and 
centroids)

Applications

(Emukit, 2021)



Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- Transportation networks

- Shipping networks

- Social networks

Applications



Estimating other properties

BEYOND GLOBAL OPTIMA

● Optimization variations (global/local/top-k optima)

● Multi-objective optimization (Pareto frontiers)

● Level set estimation (sublevel sets, superlevel sets)

● Search (subset w/ value matching some criteria)

● Phase identification (boundaries / partitions)

● Root finding / noisy bisection  (roots)

● Quadrature (integrals, expectations, averages)

● Graph-structured estimation (shortest paths)

● Sensor placement (function value at set of locations)

In a variety of real-world tasks, there are many other properties of 
black-box functions that we also want to estimate:

- Water distribution systems

- Outbreak detection in networks

- Weather monitoring

Applications

(Krause et al., 2008)



Our goal

BEYOND GLOBAL OPTIMA

To develop methods to estimate a broad set of function properties within a 
limited budget, using probabilistic models.

⇒ Can view this as a generalization of Bayesian optimization to other 
function properties... beyond global optima.

First question:

How do we formalize “other function properties” ?



Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint
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Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint

Evolution Strategy

Algorithm:  local optimization algorithm

Property:  local optima (close to some initial point) of f
e.g. gradient descent, Nelder-Mead method, 
evolutionary algorithm, etc.



Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint

Algorithm:  local optimization algorithm

Property:  local optima (close to some initial point) of f

init

end

⇒ initialize at some location, then run local minimizer. Return final query as output. 

e.g. gradient descent, Nelder-Mead method, 
evolutionary algorithm, etc.



Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint

Property:  superlevel set of  f  (e.g. over a discrete space of items).



Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint

Algorithm:  scan and threshold.

Superlevel
Set

⇒ Scan through each item      , query its value      , return subset of items above threshold.

Property:  superlevel set of  f  (e.g. over a discrete space of items).



Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint

Property:  integral or expectation of  f.



Note that, given a function property of interest...

ALGORITHMS w/o BUDGET CONSTRAINTS

Often exists effective algorithms for computing (or numerically 
approximating) the property, if you ignore budget constraint

Algorithm:  numerical integration (e.g. rectangle/trapezoidal approximation).

⇒ Run numerical integration (e.g. rectangle/trapezoidal approximation). Return approximate integral 
over region.

Property:  integral or expectation of  f.



Definition: computable function property

DEFINITIONS

The output of a given algorithm A, if it were run on our black-box function f.

⇒ E.g. previous properties are all computable function properties:

local optima, integrals, level sets, Pareto frontiers, partitions — and many others, 
defined by an algorithm!
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defined by an algorithm!

The task of estimating a computable function property (output of an 
algorithm A), using a budget of only T queries to  f.

Definition: Bayesian algorithm execution (BAX)

(Even if algorithm A requires far more than T queries.)



Definition: computable function property

DEFINITIONS

The output of a given algorithm A, if it were run on our black-box function f.

⇒ E.g. previous properties are all computable function properties:

local optima, integrals, level sets, Pareto frontiers, partitions — and many others, 
defined by an algorithm!

The task of estimating a computable function property (output of an 
algorithm A), using a budget of only T queries to  f.

Definition: Bayesian algorithm execution (BAX)

(Even if algorithm A requires far more than T queries.)

(1) gives a flexible way to define function properties.

(2) we will use algorithm in our procedure to estimate these properties.

Note: two main reasons to frame function property in terms of an algorithm:



Methods for BAX

BAYESIAN ALGORITHM EXECUTION



Information-based method for BAX

BAYESIAN ALGORITHM EXECUTION

InfoBAX — an algorithm for BAX, based on info-theoretic methods for BO. 



Information-based method for BAX

BAYESIAN ALGORITHM EXECUTION

InfoBAX — an algorithm for BAX, based on info-theoretic methods for BO. 

There exist a few popular info-based methods for BO:
- E.g.  entropy search (ES),  predictive ES,  max-value ES.
- Rooted in Bayesian optimal experimental design (BOED).

BOED: have model with an (unknown) parameter of interest.
- Choose experiments that most reduce uncertainty about parameter.
- Uncertainty:  entropy of posterior distribution over parameter.

Some relevant background

Reducing theodolite 
measurements for 
surveying.

Some BOED History

Lower entropy

Higher entropy



Information-based method for BAX

BAYESIAN ALGORITHM EXECUTION

InfoBAX — an algorithm for BAX, based on info-theoretic methods for BO. 

There exist a few popular info-based methods for BO:
- E.g.  entropy search (ES),  predictive ES,  max-value ES.
- Rooted in Bayesian optimal experimental design (BOED).

(1) Describe info-based BO.
(2) Extend it to info-based BAX.

BOED: have model with an (unknown) parameter of interest.
- Choose experiments that most reduce uncertainty about parameter.
- Uncertainty:  entropy of posterior distribution over parameter.

Some relevant background

Reducing theodolite 
measurements for 
surveying.

Some BOED History

To describe InfoBAX:



Information-based Bayesian Optimization

INFO-BASED BO



Information-based Bayesian Optimization

INFO-BASED BO

Initial dataset of (x, y) pairs (function 
observations) —  can be empty set.



Information-based Bayesian Optimization

INFO-BASED BO

Over a sequence of T iterations:



Information-based Bayesian Optimization

INFO-BASED BO

Optimize an acquisition function.
- aims to capture value of querying  f  at an x.
- defined using our probabilistic model.

⇒ Chooses next x to query.



Information-based Bayesian Optimization

INFO-BASED BO

Query f  on chosen x, observe y



Information-based Bayesian Optimization

INFO-BASED BO

Update dataset with new (x, y) pair



Information-based Bayesian Optimization

INFO-BASED BO

Visualizing this ...



BACKGROUND

(unknown) 
black-box 
function f

dataset
Dt = {(x, y)}

Unknown black-box  f , and dataset of (x, y) pairs.



BACKGROUND

Can use probabilistic model to infer  f , given dataset.

Samples from 
posterior 
distribution 
over functions



BACKGROUND

Define acquisition function using probabilistic model.

αt(x)



BACKGROUND

Optimize acquisition function ⇒ yields next point to query.

αt(x)



BACKGROUND

New 
observation 
(x, y)

Query black-box  f  at x, observe y, and update dataset.



Information-based Bayesian Optimization

INFO-BASED BO

… Key step is line 2: defining and optimizing acquisition function.



Acquisition function — info-based BO

INFO-BASED BO

Samples from 
posterior 
distribution 
over functions

Probabilistic model of  f , given dataset.



Acquisition function — info-based BO

INFO-BASED BO

Samples from 
posterior 
distribution 
over functions

Consider the 
global optima of 
each sample...

Probabilistic model of  f , given dataset.
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Samples from 
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each sample...
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Acquisition function — info-based BO

INFO-BASED BO

Samples from 
posterior 
distribution 
over functions

Consider the 
global optima of 
each sample...

Probabilistic model of  f , given dataset.

There is a posterior distribution 
over global optima induced by 
probabilistic model:



Acquisition function — info-based BO

INFO-BASED BO

This leads us to the acquisition function:
e.g. used in entropy search (ES), predictive entropy search (PES)



Acquisition function — info-based BO

INFO-BASED BO

This leads us to the acquisition function:
e.g. used in entropy search (ES), predictive entropy search (PES)

entropy of posterior distribution over 
global optima x* 

minus

expected entropy of posterior 
distribution over global optima x* ,
… if we were to make a query at x



Acquisition function — info-based BO

INFO-BASED BO

This leads us to the acquisition function:
e.g. used in entropy search (ES), predictive entropy search (PES)

There exists a clever way to compute/optimize this (from work on PES)… 

entropy of posterior distribution over 
global optima x* 

minus

expected entropy of posterior 
distribution over global optima x* ,
… if we were to make a query at x

“Expected information gain” (EIG) — expected decrease in entropy if we were to query  f  
at x.



Acquisition function — info-based BO

INFO-BASED BO

How to compute and optimize it?  Two stages:



Acquisition function — info-based BO

INFO-BASED BO

1) Before acquisition optimization:

- Generate posterior samples of 
global optima.

- (⇒ run optimization algorithm on 
function samples to get optima).

How to compute and optimize it?  Two stages:

2) Acquisition optimization:

- For any x, approximate EIG 
αt(x) using these samples.

- Allows us to optimize acquisition 
function.

Benefits: generate samples only once. Then cheaper during iterative acquisition opt.



BAYESIAN ALGORITHM EXECUTION

Recall goal of BAX:

- Estimate a computable function property using a limited budget of 
queries.

- (equivalently: Estimate output of algorithm A.)

(previous was existing work, following is new)

What acquisition function do we use for InfoBAX?



BAYESIAN ALGORITHM EXECUTION

Recall goal of BAX:

- Estimate a computable function property using a limited budget of 
queries.

- (equivalently: Estimate output of algorithm A.)

Similar to info-based BO, take a BOED strategy:

- Denote the output of algorithm A (computable function property): 

- We care about posterior over output:

- And its entropy:

Want to make queries to best 
reduce this uncertainty over 
algorithm output.

(previous was existing work, following is new)

What acquisition function do we use for InfoBAX?



InfoBAX acquisition function

BAYESIAN ALGORITHM EXECUTION

Can also define an expected information gain (EIG) acquisition function:



InfoBAX acquisition function

BAYESIAN ALGORITHM EXECUTION

entropy of posterior distribution over 
algorithm output

minus

expected entropy of posterior 
distribution over algorithm output,

… if we were to make a query at x

Can also define an expected information gain (EIG) acquisition function:

“Expected decrease in entropy on the algorithm output, if we were to query  f  at x.”



InfoBAX acquisition function

BAYESIAN ALGORITHM EXECUTION

entropy of posterior distribution over 
algorithm output

minus

expected entropy of posterior 
distribution over algorithm output,

… if we were to make a query at x

… how can we compute (and optimize) this?

Can also define an expected information gain (EIG) acquisition function:

“Expected decrease in entropy on the algorithm output, if we were to query  f  at x.”



Definition:

BAYESIAN ALGORITHM EXECUTION

Define the execution path of algorithm A as the sequence of queries 

( (x, y) pairs) that A would make on the black-box function f.

Local Optima Superlevel Set
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Definition:

BAYESIAN ALGORITHM EXECUTION

Define the execution path of algorithm A as the sequence of queries 

( (x, y) pairs) that A would make on the black-box function f.

Local Optima Superlevel Set

Note: we don’t know true execution path.

- (Since we are not running A on f ⇒ this require too many queries)

- But given a model for f, we have a posterior distribution over execution paths

Execution path = pink dots



InfoBAX acquisition function

INFO-BASED BO

Probabilistic model of  f , given dataset.



InfoBAX acquisition function

INFO-BASED BO

Consider one function sample



InfoBAX acquisition function

INFO-BASED BO

Consider one function sample

Can run algorithm A  
on function sample...



InfoBAX acquisition function

INFO-BASED BO

Execution path of 
algorithm A on sample.

Consider one function sample



InfoBAX acquisition function

INFO-BASED BO

Execution path of 
algorithm A on sample.

Can do this on 
many samples.

Consider one function sample



InfoBAX acquisition function

INFO-BASED BO

Execution path of 
algorithm A on sample.

There is a posterior distribution 
over execution paths induced by 
probabilistic model.

Can do this on 
many samples.

Consider one function sample



InfoBAX acquisition function

BAYESIAN ALGORITHM EXECUTION

How to compute and optimize it? Two stages: 
Similar to info-based BO!



InfoBAX acquisition function

BAYESIAN ALGORITHM EXECUTION

1) Before acquisition optimization:

- Run algorithm A on posterior 
function samples to get 
posterior samples of 
execution path.

How to compute and optimize it? Two stages: 

2) Acquisition optimization:

- For any x, approximate EIG 
αt(x) using these samples

- Allows us to optimize acquisition 
function

⇒ Similar structure as info-based BO, but replace global opt algorithm with A.
- Same benefits: generate samples only once. Then cheaper during iterative acquisition opt.

⇒ Look in paper for math on computing EIG αt(x) with samples.

Similar to info-based BO!



Information-based Bayesian Optimization

INFO-BASED BO

(1) Run algorithm on posterior function samples.

(2) Optimize αt(x) using resulting execution paths.



InfoBAX — one-slide summary of the full story

INFO-BASED BO
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INFO-BASED BO

Suppose we have a black-box function f 
and a property of interest

f



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Suppose we have a black-box function f 
and a property of interest

f level set



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Suppose we have a black-box function f 
and a property of interest

f inflection 
point



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Suppose we have a black-box function f 
and a property of interest

f integral

0
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Suppose we have a black-box function f 
and a property of interest

f local 
minima
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f local 
minima
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end
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Suppose we have a black-box function f 
and a property of interest

Suppose property is computable ⇒ 
there exists an algorithm A (of any budget)

f local 
minima

⇒ Goal: estimate the property (i.e. output of A) with minimal function queries

 start

end



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Run InfoBAX, a sequential algorithm 
(similar in structure to BO)

Suppose we have a black-box function f 
and a property of interest

Suppose property is computable ⇒ 
there exists an algorithm A (of any budget)

f local 
minima

⇒ Goal: estimate the property (i.e. output of A) with minimal function queries

 start

end



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Run InfoBAX, a sequential algorithm 
(similar in structure to BO)

Suppose we have a black-box function f 
and a property of interest

(at each iteration) To optimize InfoBAX 
acquisition function: two stages

Suppose property is computable ⇒ 
there exists an algorithm A (of any budget)

f local 
minima

⇒ Goal: estimate the property (i.e. output of A) with minimal function queries

1

 start

end



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Run InfoBAX, a sequential algorithm 
(similar in structure to BO)

Suppose we have a black-box function f 
and a property of interest

(at each iteration) To optimize InfoBAX 
acquisition function: two stages

Suppose property is computable ⇒ 
there exists an algorithm A (of any budget)

f local 
minima

⇒ Goal: estimate the property (i.e. output of A) with minimal function queries

2

 start

end



InfoBAX — one-slide summary of the full story

INFO-BASED BO

Run InfoBAX, a sequential algorithm 
(similar in structure to BO)

Suppose we have a black-box function f 
and a property of interest

(at each iteration) To optimize InfoBAX 
acquisition function: two stages

Suppose property is computable ⇒ 
there exists an algorithm A (of any budget)

f local 
minima

⇒ Goal: estimate the property (i.e. output of A) with minimal function queries

2

 start

end

⇒ Output: posterior estimate of property (i.e. output of A)



BAX: Demos and Applications

BAYESIAN ALGORITHM EXECUTION



Applications

APPLICATIONS of BAX

We demo BAX to estimate a few different properties of black-box functions 
(trying to show the breadth of what we can estimate)

Three applications:

- Estimating shortest paths in graphs

- Bayesian local optimization

- Estimating top-k optima Optimization variants

Black-box function over 
edges in a network



Application: estimating shortest paths in graphs

APPLICATIONS of BAX

Graph traversal/search algorithms can define properties of a black-box 
function  f  defined on edge weights in a graph.

- Suppose we want to find shortest path from location A 
to location B.

- Shortest path depends on edge weights.
- e.g. traffic, road conditions, weather, etc.

- It can be expensive to query edge weights
- e.g. measure traffic/road/weather conditions via satellite.
- e.g. determine/access shipping costs.

- Goal: adaptively query edge weights to estimate 
shortest path.

Example:  real-world transportation network
   (e.g. road, railway, shipping, air)

California road network.
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Grid-shaped 
graph:

- 400 nodes
- 2964 edges
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Edge weights 
are given by 
function  f 
(green).
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Can view this shortest path 
as a function property!

Want to know 
shortest path 
between start 
and goal.
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Suppose that 
accessing 
(querying) 
edge weights 
is expensive.

→ e.g. in 
transportation 
network 
examples

One strategy: 
use Dijkstra’s 
algorithm

How to estimate 
shortest path?
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APPLICATIONS of BAX — estimating shortest paths in graphs

Exactly 
computes the 
shortest path

One strategy: 
use Dijkstra’s 
algorithm

However…
requires over 
430 queries!

Can try a 
different 
strategy...

Blue line = shortest path 
(output of Dijkstra’s)
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Suppose we 
take small set of 
edge weight 
queries
(e.g. 30 unif-random)

Could try to 
infer shortest 
path from 
these

We’ll do the following:

(1) Use a model to infer  f 
(e.g. GP), given queries.

(2) Run Dijkstra’s on 
posterior function 
samples.



APPLICATIONS of BAX — estimating shortest paths in graphs

Posterior 
samples of 
shortest path
(output of Dijkstra’s) 
via GP model



APPLICATIONS of BAX — estimating shortest paths in graphs

Posterior 
samples of 
shortest path
(output of Dijkstra’s) 
via GP model

Estimate after 
100 queries?



APPLICATIONS of BAX — estimating shortest paths in graphs

Posterior 
samples of 
shortest path
(output of Dijkstra’s) 
via GP model

Estimate after 
100 queries?

Many uninformative queries.



APPLICATIONS of BAX — estimating shortest paths in graphs

Posterior 
samples of 
shortest path
(output of Dijkstra’s) 
via GP model

Estimate after 
100 queries?

Goal:

Choose queries to best 
infer shortest path (ie 
output of Dijkstra’s).

⇒  InfoBAX  w/ Dijkstra’s.
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InfoBAX in 
action → 

After 100 
queries.



APPLICATIONS of BAX — estimating shortest paths in graphs

Random Search Dijkstra’s InfoBAX

Comparison after 100 queries:
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APPLICATIONS of BAX

BO (typically) aims to estimate global optima.

However, many local optimization algorithms only aim to find a local optima 
(nearby some initial point)

- e.g. gradient descent, evolutionary algorithms, nelder-mead/simplex, etc.

We can use the local opt algorithms in a BAX procedure.
- ⇒ Yields local variants of BO parameterized by a local opt algorithm.

Overall intuition — view optimization as:
- Trying to estimate the output of a local opt algo, given limited budget of queries.

Local opt can be very effective for certain settings (e.g. high dimensions), 
but can require large numbers of queries.

- Sometimes many redundant queries.
- Not effective if each query is very expensive.
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APPLICATIONS of BAX — Bayesian local optimization

After 208 
queries

After 18 
queries

Two dimensional function, 
w/ three local optima



APPLICATIONS of BAX — Bayesian local optimization

InfoBAX matches performance of Evolution Strategy, using <10% of the queries.

Future steps: try this out with a variety of local optimizers.
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Application: top-k estimation

Suppose we have a large set of items.
- E.g. set of 500 catalyst materials / bulks.

Suppose we want to determine the top-k items in the set.
- E.g. the top-10 catalysts, with highest activity ⇒ for experimental evaluation.

- (These top-k might then be filtered further based on additional tests)

Each item has a value under an expensive black-box function  f.
- E.g. each catalyst bulk has an activity level, which is expensive to measure (simulate).

⇒ distinct from both global optimization (k=1) and level set estimation.

Visualizing this… 
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Black-box 
function  f 
(green).

250 items

Stars denote 
top-10 items
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Algorithm: scan 
through each 
item and query; 
return top-k
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APPLICATIONS of BAX — top-k estimation

Algorithm yields 
perfect estimate

However: uses 250 
queries

Scan and Query Algorithm (full)
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Posterior 
samples of 
top-10 items 
(blue squares)

New strategy:
Make a few 
queries and infer 
top-10  items

How about 100 
uniform random  
queries?

10 queries 
(black dots)
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APPLICATIONS of BAX — top-k estimation

Posterior 
samples of 
top-10 items 
(blue squares)

New strategy:
Make a few 
queries and infer 
top-10  items

Estimate is still not 
great 100 queries 

(black dots)

Try InfoBAX with 
“scan and query” 
algorithm



APPLICATIONS of BAX — top-k estimation

InfoBAX

Good estimate 
in <100 queries

InfoBAX explores 
the space but 
samples densely 
around high-value 
items.
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UNCERTAINTY MODELS

Final topic: software tools for uncertainty models

The BAX/BO procedures discussed all use predictive uncertainty models.

“A model of the conditional distribution over output y given an input x”

Types of uncertainty models:

“Classic” Bayesian models: GPs, various (non)lin/hier/add 
or other Bayesian models

Neural models: probabilistic neural networks, BNN, 
neural processes, deep generative models

Also: ensembles, quantile regression, conformal 
prediction, etc.

⇒ in BAX we focus on GP models, but we may wish to run similar procedures 
on a variety of probabilistic models (and to know if our models are good)
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How can we assess quality of predictive uncertainty?

ASSESSING UNCERTAINTY

Ground truth

P
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di
ct
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ns

Point prediction 
model

Ground truth

P
re

di
ct

io
ns

Predictive 
uncertainty model

Uncertainty for point 
prediction: interval, 
parametric distribution, 
samples, etc.

We can visualize point-predictions and predictive uncertainties on a given test set.

For each test point, plot predictions vs. ground truth values:
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How can we empirically assess predictive uncertainty?
Three important criteria are...

ASSESSING UNCERTAINTY

Calibration:
“Is predictive uncertainty 
distribution under/over confident? 
(ignoring prediction accuracy)”
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Accuracy:
“How good is mean prediction? 
(agnostic to uncertainty)”

How can we empirically assess predictive uncertainty?
Three important criteria are...

ASSESSING UNCERTAINTY

Calibration:
“Is predictive uncertainty 
distribution under/over confident? 
(ignoring prediction accuracy)”

Sharpness:
“On average, how confident are the 
predictions? (ignoring both of the 
above)”

Ground truth

P
re

di
ct

io
ns

Ground truth

Ground truth

P
re

di
ct

io
ns

Ground truth

Ground truth

P
re

di
ct

io
ns

Ground truth

Expected fraction in interval

O
bs

er
ve

d 
fra

ct
io

n 
in

 in
te

rv
al

Ground truth

P
re

di
ct

io
ns



Metrics for calibration

ASSESSING UNCERTAINTY

Suppose for each test point, our predictive uncertainty model returns a (1-𝛼)-interval (e.g. 95% interval) 
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Well-calibrated ⇒ “the (1-𝛼)-interval covers the true value (1-𝛼)-proportion of the time, for all 𝛼”
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𝛼 = 0.05 (95% intervals)



Metrics for calibration

ASSESSING UNCERTAINTY

Suppose for each test point, our predictive uncertainty model returns a (1-𝛼)-interval (e.g. 95% interval) 
of the predictive distribution.

Well-calibrated ⇒ “the (1-𝛼)-interval covers the true value (1-𝛼)-proportion of the time, for all 𝛼”

Can scan from 𝛼=0 to 𝛼=1, and compute:

(1) expected fraction of true values contained in interval
(2) observed fraction of true values contained in interval

Ground truthGround truth
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di
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ns

Miscalibration Area

Expected fraction in interval
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Uncertainty Toolbox

UNCERTAINTY TOOLBOX

•  To help assess uncertainty quantification methods, we released Uncertainty Toolbox.

•  “A python toolbox for predictive uncertainty quantification, calibration, metrics, and 
visualization” → github.com/uncertainty-toolbox/uncertainty-toolbox

Glossary

Metrics / Viz

Recalibration

Relevant Papers

Collaborators

Kevin 
Tran

Young 
Chung

Ian 
Char

Han 
Guo

https://github.com/uncertainty-toolbox/uncertainty-toolbox
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CONCLUSION

In summary… 

We extend Bayesian optimization from targeting global optima to targeting 
other function properties defined by algorithms.

⇒ Introduce the task of BAX,
and the information-based procedure InfoBAX

Paper link:   arxiv.org/abs/2104.09460

Thanks for listening!

Uncertainty Toolbox:   github.com/uncertainty-toolbox/uncertainty-toolbox

https://arxiv.org/abs/2104.09460
http://github.com/uncertainty-toolbox/uncertainty-toolbox





